簡易檢索 / 詳目顯示

研究生: 黃泰然
Huang, Tai-Jan
論文名稱: 面心立方低中高熵合金異向機械性質與變形行為之研究
Anisotropic Mechanical Properties and Deformation Behaviors of Face-centered Cubic Low-, Medium- and High-entropy Alloys
指導教授: 張守一
Chang, Shou-Yi
口試委員: 薛承輝
Hsueh, Chun-Hway
羅友杰
Lo, Yu-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 126
中文關鍵詞: 高熵合金面心立方機械性質變形行為異向性
外文關鍵詞: High Entropy Alloys, Face Centered Cubic, Mechanical Properties, Deformation Behaviors, Anisotropic
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 金屬材料在材料科學領域中的發展歷史悠久,且與人類生活緊密相關。但其累積至今豐厚的研究成果也造成近代金屬研究領域較缺乏大幅度的突破。過去十年內,一種新的合金系統「高熵合金」被提出並逐漸受到各界學者的重視,其特殊的機械性質與元素組成為合金材料的發展打開全新的領域。由於高熵合金的特殊組成規則顯然與傳統合金不同,目前大多針對高熵合金的實驗成果仍未能完整解釋高熵合金具有特殊機械性質的核心原理。本研究對一系列FCC合金包含傳統低熵合金NiW、中熵合金NiCrFe與高熵合金NiCrFeMnCo分別進行巨觀與微觀下機械行為與結構資訊的量測。巨觀部分包含基礎維氏硬度測量以及密度測量,微觀部分則是藉由奈米壓痕測試、臨場SEM微米柱壓應、臨場TEM奈米柱壓應觀察並分析不同亂度與三種晶體方向 (100)、(110)、(111) 之下單晶合金的機械行為變化,以高強度X光繞射分析高熵合金與傳統合金的微觀結構差異。結合上述巨觀與微觀實驗結果,與理論計算之合金資訊做相互參照分析,本實驗發現諸多高熵合金相對於傳統合金在變形行為上的顯著差異以及結構的明顯變化,進一步為探索高熵合金核心原理的未來研究方向提供重要的訊息。


    Metal has always been a crucial part of human society with prestigious status in the field of material science development history. However the abundant research done on metal and alloy also resulted in the lack of marginal breakthrough in modern days. During last decade, a brand new alloying system called “High Entropy Alloys” (HEAs) was presented and gradually gaining attention from all associations, its special mechanical properties and element composition has dawned a new era of alloy materials. Due to apparent differences of formation rules between HEAs and traditional alloys, current researches toward HEAs are still far from successfully providing results to explain the core effect and compositional theory of HEAs. This research was done on a series of FCC alloys consists of traditional low-entropy NiW alloys, medium-entropy alloy NiCrFe and HEA NiCrFeMnCo by conducting mechanical and structural experiment respectively in both macro and micro scales. Macro scale experiments included Vickers hardness and density measurement. Micro scale experiments included nano indentation, in-situ SEM micro pillar compression and in-situ TEM nano pillar compression, respectively performed on (100), (110) and (111) crystal planes of alloys with different entropy status. Micro scale crystal structure differences between traditional alloys and HEAs was obtained via high intensity X-ray diffraction. By analyzing mentioned experiment results with theoretical information, we found numerous distinct differences in both deformation behavior and crystal structure between traditional alloys and HEAs, providing further insight for future study of HEA’s core effect and compositional theory.

    誌謝 I 摘要 III Abstract IV 目錄 V 圖目錄 IX 表目錄 XV 壹、前言 1 貳、文獻回顧 3 2-1高熵合金 3 2-1-1高熵合金之發展 3 2-1-2高熵合金核心效應 5 2-1-3高熵合金之特性與應用 7 2-1-4高熵合金之機械行為研究 11 2-2材料機械行為及其影響因素 16 2-2-1鍵結 16 2-2-2晶體結構 19 2-2-3元素成分比例 21 2-2-4固溶與摻雜 23 2-2-5異向性 25 2-2-6微結構與邊界影響因素 28 2-2-7尺寸效應 30 2-3結構扭曲及其分析 32 2-3-1結構扭曲 32 2-3-2結構扭曲之理論計算 37 2-3-3結構扭曲之實驗分析 39 2-4奈米尺度機械行為分析 42 2-4-1奈米壓痕測試 (Nanoindentation) 42 2-4-2臨場掃描式電子顯微鏡 (In-situ SEM) 分析 44 2-4-3臨場穿透式電子顯微鏡 (In-situ TEM) 分析 47 2-5研究目的 49 參、實驗步驟 50 3-1實驗規劃 50 3-2實驗步驟 51 3-2-1低熵、中熵、高熵合金試片製備 51 3-2-2成分分析與理論計算 52 3-2-3巨觀定性分析 52 3-2-4晶體結構資料分析 53 3-2-5晶粒方向鑑定 55 3-2-6微觀機械分析 57 3-2-7聚焦離子束 (FIB) 臨場試片製備 59 3-2-8奈米壓痕結構變形分析 62 3-2-9臨場SEM壓縮測試 (In-situ SEM Compression) 64 3-2-10臨場TEM壓縮測試 (In-situ TEM Compression) 66 肆、結果與討論 68 4-1成分鑑定與巨觀定性分析 68 4-1-1成分鑑定 68 4-1-2材料密度 68 4-1-3維氏硬度 68 4-2結構扭曲與X光繞射分析 73 4-2-1理論結構扭曲計算分析 73 4-2-2 X光繞射分析 75 4-3奈米壓痕測試分析 79 4-3-1 彈性模數 (Elastic Modulus) 79 4-3-2 奈米硬度 (Nano Hardness) 80 4-3-3 位移突進距離 (Displacement Burst Range) 80 4-4奈米壓痕截面結構分析 87 4-4-1低熵至高熵合金之比較 87 4-4-2 (100)、(110)、(111) 方向之比較 88 4-5臨場SEM壓縮測試分析 99 4-5-1低熵至高熵合金之比較 99 4-5-2 [100]、[110]、[111] 方向之比較 99 4-6臨場TEM壓縮測試分析 105 4-6-1傳統低熵合金分析 105 4-6-2中熵合金分析 105 4-6-3高熵合金分析 106 4-6-4低熵至高熵合金之比較 107 4-7 變形機制綜合比較分析 111 伍、結論 114 陸、參考文獻 115

    [1] D. J. Lloyd, in Composites Engineering Handbook (Mallick PK, Ed.), ed New York, NY: Marcel Dekker, Inc., 1997.
    [2] HandbookCommittee, Metals Handbook (Davis JR, Ed.), 10 ed. vol. 1,2. Metals Park, OH: ASM International, 1990.
    [3] J. H. Westbrook, "Intermetallic Compounds: Principles and Practice (Westbrook JH, Fleischer RL, Eds.)," ed New York: Wiley, 1995.
    [4] HandbookCommittee, in Metals Handbook (Davis JR, Ed.). vol. 7, 10 ed Metals Park, OH: ASM International, 1990.
    [5] G. He, J. Eckert, W. Löser, and L. Schultz, "Novel Ti-base nanostructure–dendrite composite with enhanced plasticity," Nature Materials, vol. 2, pp. 33-37, 2003.
    [6] HandbookCommittee, in Metals Handbook (Baker H, Ed. vol. 3, 10 ed Metals Park, OH: ASM International, 1992.
    [7] A. L. Greer, "Confusion by design," Nature, vol. 366, pp. 303-304, 1993.
    [8] F. R. Boer, R. Boom, W. C. M. Mattens, A. R. Miedema, and A. K. Niessen, in Cohesion in Metals: Transition Metal Alloys (Boer FR, Pettifor DG, Eds.), ed New York: Elsevier, 1988.
    [9] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C.-H. Tsau, and S.-Y. Chang, "Nanostructured high‐entropy alloys with multiple principal elements: novel alloy design concepts and outcomes," Advanced Engineering Materials, vol. 6, pp. 299-303, 2004.
    [10] J.-W. Yeh, S.-J. Lin, T.-S. Chin, J.-Y. Gan, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, "Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements," Metallurgical and Materials Transactions A, vol. 35, pp. 2533-2536, 2004.
    [11] W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, "Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys," Intermetallics, vol. 26, pp. 44-51, 2012.
    [12] C.-C. Tung, J.-W. Yeh, T.-t. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, "On the elemental effect of AlCoCrCuFeNi high-entropy alloy system," Materials letters, vol. 61, pp. 1-5, 2007.
    [13] J.-W. Yeh, S.-Y. Chang, Y.-D. Hong, S.-K. Chen, and S.-J. Lin, "Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements," Materials Chemistry and Physics, vol. 103, pp. 41-46, 2007.
    [14] K.-Y. Tsai, M.-H. Tsai, and J.-W. Yeh, "Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys," Acta Materialia, vol. 61, pp. 4887-4897, 2013.
    [15] Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw, and Z. P. Lu, "Microstructures and properties of high-entropy alloys," Progress in Materials Science, vol. 61, pp. 1-93, 2014.
    [16] J. W. Y. B.S. Myuty, S. Ranganathan, High-Entropy Alloys. London, UK: Elsevier, 2014.
    [17] J. W. Y. M.C. Gao, P.K. Liaw,Y. Zhang (Eds.), High-Entropy Alloys - Fundamentals and Applications. Switzerland: Springer, 2016.
    [18] D. Miracle and O. Senkov, "A critical review of high entropy alloys and related concepts," Acta Materialia, vol. 122, pp. 448-511, 2017.
    [19] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, and R. O. Ritchie, "A fracture-resistant high-entropy alloy for cryogenic applications," Science, vol. 345, pp. 1153-1158, 2014.
    [20] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, and E. P. George, "The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy," Acta Materialia, vol. 61, pp. 5743-5755, 2013.
    [21] B. Gludovatz, A. Hohenwarter, K. V. Thurston, H. Bei, Z. Wu, E. P. George, and R. O. Ritchie, "Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures," Nature Communications, vol. 7, 2016.
    [22] Z. Li, K. G. Pradeep, Y. Deng, D. Raabe, and C. C. Tasan, "Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off," Nature, 2016.
    [23] M. Yao, K. Pradeep, C. Tasan, and D. Raabe, "A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility," Scripta Materialia, vol. 72, pp. 5-8, 2014.
    [24] Y. Deng, C. C. Tasan, K. G. Pradeep, H. Springer, A. Kostka, and D. Raabe, "Design of a twinning-induced plasticity high entropy alloy," Acta Materialia, vol. 94, pp. 124-133, 2015.
    [25] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and S.-Y. Chang, "Preparation and characterization of AlCrTaTiZr multi-element nitride coatings," Surface and Coatings Technology, vol. 201, pp. 3275-3280, 2006.
    [26] C.-H. Lai, S.-J. Lin, J.-W. Yeh, and A. Davison, "Effect of substrate bias on the structure and properties of multi-element (AlCrTaTiZr) N coatings," Journal of Physics D: Applied Physics, vol. 39, p. 4628, 2006.
    [27] S.-Y. Chang, S.-Y. Lin, Y.-C. Huang, and C.-L. Wu, "Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr) N x multi-component coatings," Surface and Coatings Technology, vol. 204, pp. 3307-3314, 2010.
    [28] S.-Y. Lin, S.-Y. Chang, Y.-C. Huang, F.-S. Shieu, and J.-W. Yeh, "Mechanical performance and nanoindenting deformation of (AlCrTaTiZr) NC y multi-component coatings co-sputtered with bias," Surface and Coatings Technology, vol. 206, pp. 5096-5102, 2012.
    [29] S.-Y. Lin, S.-Y. Chang, C.-J. Chang, and Y.-C. Huang, "Nanomechanical properties and deformation behaviors of multi-component (AlCrTaTiZr) NxSiy high-entropy coatings," Entropy, vol. 16, pp. 405-417, 2013.
    [30] S.-Y. Chang, M.-K. Chen, and D.-S. Chen, "Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Cu metallization," Journal of The Electrochemical Society, vol. 156, pp. G37-G42, 2009.
    [31] S.-Y. Chang and D.-S. Chen, "10-nm-thick quinary (AlCrTaTiZr) N film as effective diffusion barrier for Cu interconnects at 900 C," Applied Physics Letters, vol. 94, p. 231909, 2009.
    [32] S.-Y. Chang, C.-Y. Wang, M.-K. Chen, and C.-E. Li, "Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers," Journal of Alloys and Compounds, vol. 509, pp. L85-L89, 2011.
    [33] S.-Y. Chang, C.-E. Li, S.-C. Chiang, and Y.-C. Huang, "4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr) N x as robust diffusion barrier for Cu interconnects," Journal of Alloys and Compounds, vol. 515, pp. 4-7, 2012.
    [34] S.-Y. Chang, C.-E. Li, Y.-C. Huang, H.-F. Hsu, J.-W. Yeh, and S.-J. Lin, "Structural and thermodynamic factors of suppressed interdiffusion kinetics in multi-component high-entropy materials," Scientific Reports, vol. 4, 2014.
    [35] C.-y. Hsu, J.-W. Yeh, S.-K. Chen, and T.-T. Shun, "Wear resistance and high-temperature compression strength of Fcc CuCoNiCrAl 0.5 Fe alloy with boron addition," Metallurgical and Materials Transactions A, vol. 35, pp. 1465-1469, 2004.
    [36] M.-R. Chen, S.-J. Lin, J.-W. Yeh, M.-H. Chuang, S.-K. Chen, and Y.-S. Huang, "Effect of vanadium addition on the microstructure, hardness, and wear resistance of Al 0.5 CoCrCuFeNi high-entropy alloy," Metallurgical and Materials Transactions A, vol. 37, pp. 1363-1369, 2006.
    [37] M.-R. Chen, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and C.-P. Tu, "Microstructure and properties of Al0. 5CoCrCuFeNiTix (x= 0–2.0) high-entropy alloys," Materials Transactions, vol. 47, pp. 1395-1401, 2006.
    [38] J.-M. Wu, S.-J. Lin, J.-W. Yeh, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, "Adhesive wear behavior of Al x CoCrCuFeNi high-entropy alloys as a function of aluminum content," Wear, vol. 261, pp. 513-519, 2006.
    [39] O. Senkov, G. Wilks, J. Scott, and D. Miracle, "Mechanical properties of Nb 25 Mo 25 Ta 25 W 25 and V 20 Nb 20 Mo 20 Ta 20 W 20 refractory high entropy alloys," Intermetallics, vol. 19, pp. 698-706, 2011.
    [40] O. Senkov, S. Senkova, D. Miracle, and C. Woodward, "Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system," Materials Science and Engineering: A, vol. 565, pp. 51-62, 2013.
    [41] Y. Chen, U. Hong, H. Shih, J. Yeh, and T. Duval, "Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel," Corrosion Science, vol. 47, pp. 2679-2699, 2005.
    [42] Y. Chen, U. Hong, J. Yeh, and H. Shih, "Mechanical properties of a bulk Cu 0.5 Ni Al Co Cr Fe Si glassy alloy in 288° C high-purity water," Applied Physics Letters, vol. 87, p. 261918, 2005.
    [43] Y. Chen, U. Hong, J. Yeh, and H. Shih, "Selected corrosion behaviors of a Cu 0.5 NiAlCoCrFeSi bulk glassy alloy in 288° C high-purity water," Scripta Materialia, vol. 54, pp. 1997-2001, 2006.
    [44] Z. Zhang, M. Mao, J. Wang, B. Gludovatz, Z. Zhang, S. X. Mao, et al., "Nanoscale origins of the damage tolerance of the high-entropy alloy CrMnFeCoNi," Nature Communications, vol. 6, pp. 10143, 2015.
    [45] J. P. Hirth and J. Lothe, Theory of Dislocations, 2 ed. New York: Wiley, 1982.
    [46] D. Kiener, P. Hosemann, S. Maloy, and A. Minor, "In situ nanocompression testing of irradiated copper," Nature Materials, vol. 10, pp. 608-613, 2011.
    [47] S. Korte and W. Clegg, "Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO," Philosophical Magazine, vol. 91, pp. 1150-1162, 2011.
    [48] F. Östlund, P. R. Howie, R. Ghisleni, S. Korte, K. Leifer, W. J. Clegg, et al., "Ductile–brittle transition in micropillar compression of GaAs at room temperature," Philosophical Magazine, vol. 91, pp. 1190-1199, 2011.
    [49] B. Ren, Z. Liu, D. Li, L. Shi, B. Cai, and M. Wang, "Effect of elemental interaction on microstructure of CuCrFeNiMn high entropy alloy system," Journal of Alloys and Compounds, vol. 493, pp. 148-153, 2010.
    [50] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles, 4 ed. Standford,CT: CENGAGE Learning, 2010.
    [51] J. J. Vlassak and W. Nix, "Measuring the elastic properties of anisotropic materials by means of indentation experiments," Journal of the Mechanics and Physics of Solids, vol. 42, pp. 1223-1245, 1994.
    [52] B. Viswanath, R. Raghavan, U. Ramamurty, and N. Ravishankar, "Mechanical properties and anisotropy in hydroxyapatite single crystals," Scripta Materialia, vol. 57, pp. 361-364, 2007.
    [53] B. Wang, R. Xin, G. Huang, and Q. Liu, "Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression," Materials Science and Engineering: A, vol. 534, pp. 588-593, 2012.
    [54] T. Li, Y. Gao, H. Bei, and E. P. George, "Indentation Schmid factor and orientation dependence of nanoindentation pop-in behavior of NiAl single crystals," Journal of the Mechanics and Physics of Solids, vol. 59, pp. 1147-1162, 2011.
    [55] J. Kiely and J. Houston, "Nanomechanical properties of Au (111),(001), and (110) surfaces," Physical Review B, vol. 57, p. 12588, 1998.
    [56] W. Wang and K. Lu, "Nanoindentation measurement of hardness and modulus anisotropy in Ni 3 Al single crystals," Journal of Materials Research, vol. 17, pp. 2314-2320, 2002.
    [57] J. Vlassak, M. Ciavarella, J. Barber, and X. Wang, "The indentation modulus of elastically anisotropic materials for indenters of arbitrary shape," Journal of the Mechanics and Physics of Solids, vol. 51, pp. 1701-1721, 2003.
    [58] K. Lu, L. Lu, and S. Suresh, "Strengthening materials by engineering coherent internal boundaries at the nanoscale," Science, vol. 324, pp. 349-352, 2009.
    [59] J. Zhang, G. Liu, and J. Sun, "Comparisons between homogeneous boundaries and heterophase interfaces in plastic deformation: Nanostructured Cu micropillars vs. nanolayered Cu-based micropillars," Acta Materialia, vol. 61, pp. 6868-6881, 2013.
    [60] S. H. Oh, M. Legros, D. Kiener, and G. Dehm, "In situ observation of dislocation nucleation and escape in a submicrometre aluminium single crystal," Nature materials, vol. 8, pp. 95-100, 2009.
    [61] C. Q. Sun, "Dominance of broken bonds and nonbonding electrons at the nanoscale," Nanoscale, vol. 2, pp. 1930-1961, 2010.
    [62] J. R. Greer and J. T. M. De Hosson, "Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect," Progress in Materials Science, vol. 56, pp. 654-724, 2011.
    [63] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, "Solid‐solution phase formation rules for multi‐component alloys," Advanced Engineering Materials, vol. 10, pp. 534-538, 2008.
    [64] M. Danisch, Y. Jin, and H. A. Makse, "Model of random packings of different size balls," Physical Review E, vol. 81, p. 051303, 2010.
    [65] Z. Wang, Y. Huang, Y. Yang, J. Wang, and C. Liu, "Atomic-size effect and solid solubility of multicomponent alloys," Scripta Materialia, vol. 94, pp. 28-31, 2015.
    [66] S. Guo, C. Ng, J. Lu, and C. Liu, "Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys," Journal of Applied Physics, vol. 109, p. 103505, 2011.
    [67] S. Guo, Q. Hu, C. Ng, and C. Liu, "More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase," Intermetallics, vol. 41, pp. 96-103, 2013.
    [68] A. K. Singh, N. Kumar, A. Dwivedi, and A. Subramaniam, "A geometrical parameter for the formation of disordered solid solutions in multi-component alloys," Intermetallics, vol. 53, pp. 112-119, 2014.
    [69] G. Sheng and C. T. LIU, "Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase," Progress in Natural Science: Materials International, vol. 21, pp. 433-446, 2011.
    [70] S. Susman, K. Volin, D. Price, M. Grimsditch, J. Rino, R. Kalia, P. Vashishta, G. Gwanmesia, Y. Wang, and R. C. Liebermann, "Intermediate-range order in permanently densified vitreous SiO 2: A neutron-diffraction and molecular-dynamics study," Physical Review B, vol. 43, p. 1194, 1991.
    [71] M. Braden, P. Schweiss, G. Heger, W. Reichardt, Z. Fisk, K. Gamayunov, I. Tanaka, and H. Kojima, "Relation between structure and doping in La2− xSrxCuO4+ δ a neutron diffraction study on single crystals," Physica C: Superconductivity, vol. 223, pp. 396-416, 1994.
    [72] E.-W. Huang, S. Y. Lee, W. Woo, and K.-W. Lee, "Three-orthogonal-direction stress mapping around a fatigue-crack tip using neutron diffraction," Metallurgical and Materials Transactions A, vol. 43, pp. 2785-2791, 2012.
    [73] W. Woo, E.-W. Huang, J.-W. Yeh, H. Choo, C. Lee, and S.-Y. Tu, "In-situ neutron diffraction studies on high-temperature deformation behavior in a CoCrFeMnNi high entropy alloy," Intermetallics, vol. 62, pp. 1-6, 2015.
    [74] Y. Wu, W. Liu, X. Wang, D. Ma, A. D. Stoica, T. Nieh, Z. B. He1, and Z. P. Lu, "In-situ neutron diffraction study of deformation behavior of a multi-component high-entropy alloy," Applied Physics Letters, vol. 104, p. 051910, 2014.
    [75] E.-W. Huang, D. Yu, J.-W. Yeh, C. Lee, K. An, and S.-Y. Tu, "A study of lattice elasticity from low entropy metals to medium and high entropy alloys," Scripta Materialia, vol. 101, pp. 32-35, 2015.
    [76] K. Sangwal, P. Gorostiza, J. Servat, and F. Sanz, "Atomic force microscopy study of nanoindentation deformation and indentation size effect in MgO crystals," Journal of Materials Research, vol. 14, pp. 3973-3982, 1999.
    [77] F. Präßler, W. Grimm, and T. Chudoba, "Properties of ta‐C Films for Tools and Machinery Parts," Plasma Processes and Polymers, vol. 6, pp. S468-S472, 2009.
    [78] J. San Juan, M. L. Nó, and C. A. Schuh, "Superelasticity and Shape Memory in Micro‐and Nanometer‐scale Pillars," Advanced Materials, vol. 20, pp. 272-278, 2008.
    [79] M. Dietiker, S. Buzzi, G. Pigozzi, J. Löffler, and R. Spolenak, "Deformation behavior of gold nano-pillars prepared by nanoimprinting and focused ion-beam milling," Acta Materialia, vol. 59, pp. 2180-2192, 2011.
    [80] A. M. Giwa, P. K. Liaw, K. A. Dahmen, and J. R. Greer, "Microstructure and small-scale size effects in plasticity of individual phases of Al 0.7 CoCrFeNi High Entropy alloy," Extreme Mechanics Letters, vol. 8, pp. 220-228, 2016.
    [81] Y. Zou, J. M. Wheeler, H. Ma, P. Okle, and R. Spolenak, "Nanocrystalline High-Entropy Alloys: A New Paradigm in High-Temperature Strength and Stability," Nano Letters, vol. 17, pp. 1569-1574, 2017.
    [82] M. Wall and U. Dahmen, "An in situ nanoindentation specimen holder for a high voltage transmission electron microscope," Microscopy Research and Technique, vol. 42, pp. 248-254, 1998.
    [83] Z. Shan, R. K. Mishra, S. S. Asif, O. L. Warren, and A. M. Minor, "Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals," Nature Materials, vol. 7, pp. 115-119, 2008.
    [84] J. Ye, R. K. Mishra, A. R. Pelton, and A. M. Minor, "Direct observation of the NiTi martensitic phase transformation in nanoscale volumes," Acta Materialia, vol. 58, pp. 490-498, 2010.
    [85] Y. Liu, I. Karaman, H. Wang, and X. Zhang, "Two Types of Martensitic Phase Transformations in Magnetic Shape Memory Alloys by In‐Situ Nanoindentation Studies," Advanced Materials, vol. 26, pp. 3893-3898, 2014.
    [86] D. Kiener, W. Grosinger, G. Dehm, and R. Pippan, "A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples," Acta Materialia, vol. 56, pp. 580-592, 2008.
    [87] Y. Yue, P. Liu, Z. Zhang, X. Han, and E. Ma, "Approaching the theoretical elastic strain limit in copper nanowires," Nano Letters, vol. 11, pp. 3151-3155, 2011.
    [88] S. Mao, H. Li, Y. Liu, Q. Deng, L. Wang, Y. Zhang, and X. D. Han, "Stress-induced martensitic transformation in nanometric NiTi shape memory alloy strips: An in situ TEM study of the thickness/size effect," Journal of Alloys and Compounds, vol. 579, pp. 100-111, 2013.

    QR CODE