研究生: |
李庚諺 Lee, Keng-Yen |
---|---|
論文名稱: |
開發廣義雙線性頻率估測法以分析非平滑振動系統之共振頻率 Estimating Resonant Frequency of Non-Smooth Oscillators Using a Generalized Bilinear Frequency Approximation Method |
指導教授: |
田孟軒
Tien, Meng-Hsuan |
口試委員: |
陳任之
Chan, Yum-Ji 宋震國 Sung, Cheng-Kuo |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 非平滑振動子 、非線性結構振動 、共振頻率 、背骨曲線 |
外文關鍵詞: | non-smooth ocillator, nonlinear vibration, resonant frequency, backbone curve |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
估算含有接觸或碰撞元件的非平滑振動子(non-smooth oscillator)之共振頻率對於各種機械、航太結構的設計、控制、及健康監測至關重要。其中由間歇性接觸引起的非平滑振動系統通常無法使用有效率的線性方法予以分析,因此預測這些系統的振動特性相當具有挑戰性。為了能夠有效率地預測非平滑振動系統的動態特性,Shaw及Holmes首先提出了一個經典的非線性共振頻率運算法:bilinear frequency approximation (BFA)法。有別於其它的非線性數值方法,BFA法使用雙線性動態系統中個別子系統的線性特性來估算非平滑振動子的共振頻率,因此可以避免繁重的數值運算並且快速地分析系統的動態特性。然而傳統的BFA方法只適用於接觸元件中間隙尺寸為零的系統,因此大幅地限制了其應用範圍。本文中提出一種廣義的generalized BFA法,使BFA法能夠應用於接觸元件中存在間隙或是預應力的非平滑振動系統之分析。應用此方法能夠相當快速地建構非平滑振動系統的背骨曲線,以預測這些系統的非線性振動特性。此計算方法能夠應用於分析各種具有接觸非線性的機械、航太、及土木系統之振動響應。本文分別以數值方法以及實驗方法驗證generalized BFA法之準確性。
Estimating the resonant frequency of non-smooth oscillators with contacting elements is critical for design, control, and health monitoring of a variety of mechanical and aerospace structures. The nonlinearity caused by the intermittent contact typically excludes the use of efficient linear methods; hence the prediction of vibration characteristics of these system becomes computationally challenging. In order to facilitate the analysis of the dynamic property of non-smooth oscillators, a classical technique referred to as the bilinear frequency approximation (BFA) method was first developed by Shaw and Holmes. The BFA method estimates the resonant frequency of bilinear oscillators using the linear characteristics of underlying linear systems and hence expensive numerical simulations can be avoided. However, the traditional BFA method is only accurate for single degree-of-freedom (DOF) systems whose gap size between the contacting elements is zero. In this thesis, a generalized BFA method is proposed to extend the capability of the traditional BFA method to capture the resonant frequency of multiple DOF non-smooth systems where either gaps or prestress exist. The generalized BFA method employs the linear properties, including the natural frequencies and mode shapes, of the subsystems and the gap size at the contacting DOF to approximate the resonant frequency of general non-smooth oscillators. The backbone curve of the non-smooth oscillators can be efficiently constructed using the proposed method. The generalized BFA method is demonstrated on a few mechanical oscillators and is validated both numerically and experimentally.
[1] Doebling, S., C. Farrar, and M. Prime, A Summary Review of Vibration-Based Damage Identification Methods. The Shock and Vibration Digest, 1998. 30: p. 91-105.
[2] Brownjohn, J.M.W., et al., Vibration-based monitoring of civil infrastructure: challenges and successes. Journal of Civil Structural Health Monitoring, 2011. 1(3): p. 79-95.
[3] Bovsunovsky, A. and C. Surace, Non-linearities in the vibrations of elastic structures with a closing crack: A state of the art review. Mechanical Systems and Signal Processing, 2015. 62-63: p. 129-148.
[4] Lisitano, D., et al., Experimental feedback linearisation of a non-smooth nonlinear system by the method of receptances. Mathematics and Mechanics of Solids, 2018. 24: p. 108128651774460.
[5] Tien, M.-H. and K. Dsouza, Method for controlling vibration by exploiting piecewise-linear nonlinearity in energy harvesters. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020. 476: p. 20190491.
[6] Chatterjee, A., Structural damage assessment in a cantilever beam with a breathing crack using higher order frequency response functions. Journal of Sound and Vibration, 2010. 329(16): p. 3325-3334.
[7] Noël, J.P. and G. Kerschen, Nonlinear system identification in structural dynamics: 10 more years of progress. Mechanical Systems and Signal Processing, 2017. 83: p. 2-35.
[8] Meirovitch, L., Fundamentals of vibrations. 2003: Mcgraw-Hill Publ.Comp.
[9] Flores, P., R. Leine, and C. Glocker, Application of the nonsmooth dynamics approach to model and analysis of the contact-impact events in cam-follower systems. Nonlinear Dynamics, 2012. 69.
[10] Wang, Y., Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time. Journal of Sound and Vibration. Journal of Sound and Vibration, 1995.
[11] Newmark, N.M., A Method of Computation for Structural Dynamics. Journal of the Engineering Mechanics Division, 1959. 85(3): p. 67-94.
[12] Dormand, J.R. and P.J. Prince, A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 1980. 6(1): p. 19-26.
[13] Shampine, L.F. and M.W. Reichelt, The MATLAB ODE Suite. SIAM Journal on Scientific Computing, 1997. 18(1): p. 1-22.
[14] MATLAB: version: R2020b. 2020, The MathWorks Inc.: Natick,Massachusetts.
[15] Wagg, D. and S. Neild, Nonlinear vibration with control. 2015: Spinger.
[16] Kim, T.C., T.E. Rook, and R. Singh, Super- and Sub-Harmonic Response Calculations for a Torsional System with Clearance Nonlinearity Using the Harmonic Balance Method. Journal of Sound and Vibration, 2005. 281(3-5): p. 965-993.
[17] Saito, A., et al., Efficient Nonlinear Vibration Analysis of the Forced Response of Rotating Cracked Blades. Journal of Computational and Nonlinear Dynamics, 2009. 4: p. 011005-10.
[18] Zucca, S. and B.I. Epureanu, Reduced order models for nonlinear dynamic analysis of structures with intermittent contacts. Journal of Vibration and Control, 2018. 24(12): p. 2591-2604.
[19] Jung, C., K. D׳Souza, and B.I. Epureanu, Nonlinear amplitude approximation for bilinear systems. Journal of Sound and Vibration, 2014. 333(13): p. 2909-2919.
[20] Tien, M.-H. and K. D’Souza, A generalized bilinear amplitude and frequency approximation for piecewise-linear nonlinear systems with gaps or prestress. Nonlinear Dynamics, 2017. 88(4): p. 2403-2416.
[21] Tien, M.-H., T. Hu, and K. D’Souza, Statistical Analysis of the Nonlinear Response of Bladed Disks with Mistuning and Cracks. AIAA Journal, 2019. 57(11): p. 4966-4977.
[22] Tien, M.-H. and K. D'Souza, Analyzing Bilinear Systems Using a New Hybrid Symbolic-Numeric Computational Method. Journal of Vibration and Acoustics, 2019. 141(3).
[23] Tien, M.-H. and K. D’Souza, Transient dynamic analysis of cracked structures with multiple contact pairs using generalized HSNC. Nonlinear Dynamics, 2019. 96(2): p. 1115-1131.
[24] Londoño, J.M., S.A. Neild, and J.E. Cooper, Identification of backbone curves of nonlinear systems from resonance decay responses. Journal of Sound and Vibration, 2015. 348: p. 224-238.
[25] Worden, K., Nonlinearity in Structural Dynamics: Detection, Identification and Modeling. 2019: CRC Press.
[26] Urasaki, S. and H. Yabuno, Identification method for backbone curve of cantilever beam using van der Pol-type self-excited oscillation. Nonlinear Dynamics, 2021. 103(4): p. 3429-3442.
[27] Yoong, C., A. Thorin, and M. Legrand, Nonsmooth modal analysis of an elastic bar subject to a unilateral contact constraint. Nonlinear Dynamics, 2018. 91(4): p. 2453-2476.
[28] Shaw, S.W. and P.J. Holmes, A periodically forced piecewise linear oscillator. Journal of Sound and Vibration, 1983. 90(1): p. 129-155.
[29] Saito, A., M.P. Castanier, and C. Pierre, Estimation and Veering Analysis of Nonlinear Resonant Frequencies of Cracked Plates. Journal of Sound and Vibration, 2009. 326(3-5): p. 725-739.
[30] Humar, J., Dynamics of structures. 2012: CRC press.