簡易檢索 / 詳目顯示

研究生: 江叡涵
Jiang, Ruei-Han
論文名稱: 超高解析度、高通量及高訊雜比電漿子光學探針設計及其空間與光譜成像應用
Super Resolution and High Throughput and Great Signal-to-Noise Ratio Plasmonic Tip and its Spatial and Spectral Imaging Applications
指導教授: 嚴大任
Yen, Ta-Jen
口試委員: 陳祺
Chen, Chi
朱仁佑
Chu, Jen-You
張書維
Chang, Shu-Wei
林鼎晸
Lin, Ding-Zheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 131
中文關鍵詞: 表面電漿子共振電漿子光學探針近場光學掃描顯顯影針尖增強拉曼光譜顯影
外文關鍵詞: Plasmonics tip, Near-field scanning optical microscopy, Nanofocusing, Tip-enhanced Raman spectroscopy
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電漿子光學(Plasmonics)是探討表面等離子共振(Surface plasmon resonance, SPR)相關的科學技術,表面電漿子(Surface plasmon polaritons, SPPs)吸引人的特性是可利用次波長結構(subwavelength structure)設計,引導SPPs產生奈米聚焦效應。其奈米聚焦產生高侷限高增益電場,可應用於操控光與物質的相互作用或增強非線性光學現象。在此論文中,我們引入Plasmonics的概念來創建具有高解析度、高增益和高訊雜比的納米光源,通過SPR結構設計,產生打破繞射極限的奈米光源,以期解決現代光學顯微鏡的問題。
    近場掃描光學顯微鏡(NSOM)為一種超出繞射極限的光學成像技術,可應用於光譜分析和化學鑑定,但是現代NSOM技術遇到一些基本限制,例如,孔隙型探針(aperture tip, a-tip)的奈米光源特性,為低通量(約為激發光的10-6倍),空間解析度至(60-100 nm)受到限制;另一種光學探針,無孔隙型探針(scattering tip, s-tip)的奈米光源,壟罩在激發光的照射下,其信噪比(Signal to noise ratio, SNR)下幾乎為零,需利用麥克干涉儀及鎖相放大器等技術,取得近場訊號。我們提出的電漿子探針(plasmonic tip, p-tip)利用SPPs奈米聚焦效應及Fabry-Pérot共振效應,產生無背景光的奈米光源。在實驗上證明光學分辨率為10 nm,空間分辨率為10 nm,通量為3.28%,SNR高達18.2(近乎無背景光源),證明p-tip優於目前的NSOM探針。
    接下來,我們擴展尖端增強拉曼光譜(TERS)的應用,該技術是一種新興探測技術,不僅揭示了高分辨率的結構信息,並提供了超出光學繞射極限的光譜影像分析。先前技術是基於間隙模式機制(gap mode configuration)激發並增強拉曼訊號,通過在貴金屬單晶基板和金屬針尖(例如Au和Ag)之間的間隙,產生的強侷限電漿子電場,有效地增強了分子物質的拉曼光譜信號。但是,其侷限電場會因間隙變大以及基板的金屬損耗迅速下降,因此,此間隙模式TERS檢測會受到薄樣品(數個納米以下)以及單晶貴金屬基板的限制。在此論文中,我們展示電漿子探針激發的拉曼訊號(p-TERS),具有23.4 nm光學空間分辨率和約60000 a.u. 增強訊號,並消除了樣品和基材限制等問題,p-TERS適用於分析原位化學分析以及結構分析,也適用於分析較厚的樣品和非導電性基板。在未來,P-TERS影像應用於研究分子結構或檢測生物系統的詳細化學等信息方面具有巨大潛力。


    The field of plasmonics has given rise to surface plasmon resonance (SPR)-related science and technology. The attractive properties of surface plasmon polaritons (SPPs) are the ability to concentrate and channel light in a very small volume using subwavelength structures. Concentrating light in this way leads to an electric field enhancement that can be used to manipulate light-matter interactions and boost nonlinear phenomena. In this dissertation, we employ plasmonics to create a nanosource with concentrated SPs and solve an issue in optical microscopy. We demonstrate a plasmonic tip design with super-resolution, high throughput and a high signal-to-noise ratio. With the plasmonic structure design, the SPs can shrink the nanovolume beyond the diffraction limit.
    Near-field scanning optical microscopy (NSOM) is a powerful technique that simultaneously enables optical imaging, spectroscopic analysis and chemical identification beyond the diffraction limit. However, the modern NSOM technique encounters a few fundamental restrictions. For example, for an aperture tip (a-tip), the throughput is extremely low, the lateral resolution is poor, and both are limited by the aperture size; for a scattering tip (s-tip), the signal-to-noise ratio (SNR) of the 0th optical signal is almost zero, so one should use the techniques of Michelson interferometer and locking amplifier to get near field signal. We show that a p-tip supports a radial symmetric SPP excitation and a Fabry-Pérot resonance and experimentally demonstrate an optical resolution of 10 nm, a topographic resolution of 10 nm, a throughput of 3.28%, and an outstanding SNR of up to 18.2 (near-free background). The demonstrated p-tip outperforms state-of-the-art NSOM tips.
    Next, we further extend an application in tip-enhanced Raman spectroscopy (TERS), a burgeoning probing technique that not only reveals structural information with high resolution but also provides in situ chemical information of a sample beyond the optical diffraction limit. Based on the gap-mode configuration, TERS efficiently enhances the spectral signals of molecular species via the strong localized plasmonic field produced in the gap between the noble metal substrate and the tip, e.g., Au and Ag. However, the local field rapidly decreases with a large gap and a high-plasmonic-loss substrate. As a result, gap-mode TERS detection is limited to a thin sample (a few nanometers) and a crystal noble metal substrate. Here, we demonstrate plasmonic TERS (p-TERS) with an optical spatial resolution of 23.4 nm and an enhancement of ~60000 a.u. and eliminate the sample and substrate issues. p-TERS is a powerful method for analyzing local chemistry and is also suitable for analyzing thicker samples and nonconductive substrates. P-TERS has great potential for visually characterizing biomolecular structures and detecting detailed chemical information of biological systems.

    摘要 I Abstract II Acknowledgments III Table of contents IV List of Figures VII List of Tables XVII Chapter 1 Introduction 1 1.1 Overview of this thesis 1 1.2 Optical measurement 3 1.3 Elastic scattering and inelastic scattering optical measurement 7 1.4 Surface plasmon polariton 10 1.4.1 Nanofocusing of electromagnetic radiation 14 Chapter 2 Principles and Experimental instruments 16 2.1 Imaging quality 16 2.2 Confocal microscopy 18 2.2.1 Diffraction limit 19 2.3 Scanning probe microscopy (SPM) 22 2.4 Scanning near field microscopy (SNOM) 24 2.4.1 Aperture-type NSOM 24 2.4.2 Scattering-type NSOM 26 Chapter 3 Excitation of the Superfocusing SPP mode 29 3.1 Literature review 29 3.2 Design of the optimal plasmonic tip 31 3.3 Theoretical calculation of Lagurra-Gaussian modes in plasmonic tip 33 3.4 Simulation of optimal plasmonic tip 42 3.4.1 Tip shape 42 3.4.2 2D FDTD optimization procedure 42 3.4.3 3D FDTD simulation of the plasmonic tip 44 3.5 Characteristic of the Plasmonic tip 47 3.5.1 The enhancement of the optimal annular structure 47 3.5.2 The optical resolution is defined by tip apex size 48 Chapter 4 Near-Field Plasmonic Probe with Super Resolution, High Throughput and Great Signal-to-Noise Ratio 51 4.1 Tip preparation and experimental procedure 51 4.2 Characteristics of nanosource at the plasmonic tip 55 4.2.1 Throughput measurement 57 4.2.2 Optical resolution 59 4.2.3 Near field contrast of a-tip and p-tip 62 4.2.4 Signal to noise ratio 66 4.2.5 Analysis of near field measurement with plasmonic tip 68 4.3 Conclusion 73 Chapter 5 Plasmonic Tip Enhanced Inelastic Scattering Spectroscopy 75 5.1 Motivation 75 5.1.1 STM-based TERS 76 5.1.2 AFM-based TERS system 77 5.2 Gap-mode-free and background-near-free Plasmonic-Tip design 79 5.3 Comparison among the optimized plasmonic TERS and gap mode TERS 81 5.4 Demonstration of superfocusing on plasmonic tip 86 5.5 Plasmonic tip enhanced inelastic signal imaging 88 5.6 Plasmonic tip enhanced Raman signal imaging 93 5.6.1 Raman enhancement 94 5.6.2 Raman mapping 96 5.7 Conclusion 100 Chapter 6 Summary and Future work 101 Appendix 102 AI.1 Academic publication & patent 102 AI.1.1 Journal Paper 102 AI.1.2 Conference Paper 103 AI.1.3 Patent 105 AI.2 Au Fischer pattern fabrication 107 AI.3 Alignment steps for Witec system alpha 300s 113 Reference 115

    Reference
    [1] A. F. J. Levi, "The Lorentz oscillator model," in Essential Classical Mechanics for Device Physics: Morgan & Claypool Publishers, 2016, pp. 5-1-5-21.
    [2] A. Note, "1217-1. Basics of measuring dielectric properties of materials," Santa Clara, CA: Hewlett Packard, 1992.
    [3] J. W. Strutt, "LVIII. On the scattering of light by small particles," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 41, no. 275, pp. 447-454, 1871/06/01 1871.
    [4] J. Q. Stewart, "Generalizations of the Rayleigh Formula for Molecular Scattering," Journal of the Optical Society of America, vol. 11, no. 6, pp. 581-597, 1925/12/01 1925.
    [5] C. V. Raman and K. S. Krishnan, "The production of new radiations by light scattering. —Part I," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 122, no. 789, pp. 23-35, 1929/01/01 1929.
    [6] D. A. Long, "The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules," 2002.
    [7] R. W. Wood, "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 4, no. 21, pp. 396-402, 1902/09/01 1902.
    [8] E. Kretschmann, "Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen," journal article vol. 241, no. 4, pp. 313-324, August 01 1971.
    [9] H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 1988.
    [10] K. A. Willets and R. P. J. A. R. P. C. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," vol. 58, pp. 267-297, 2007.
    [11] E. Kretschmann and H. Raether, "Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light," in Zeitschrift für Naturforschung A vol. 23, ed, 1968, p. 2135.
    [12] J. R. Sambles, G. W. Bradbery, and F. Yang, "Optical excitation of surface plasmons: An introduction," Contemporary Physics, vol. 32, no. 3, pp. 173-183, 1991/05/01 1991.
    [13] W. Chen and Q. Zhan, "Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination," Optics Express, vol. 15, no. 7, pp. 4106-4111, 2007/04/02 2007.
    [14] W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, "Plasmonic Lens Made of Multiple Concentric Metallic Rings under Radially Polarized Illumination," Nano Letters, vol. 9, no. 12, pp. 4320-4325, 2009/12/09 2009.
    [15] C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, "Near-Field Localization in Plasmonic Superfocusing: A Nanoemitter on a Tip," Nano Letters, vol. 10, no. 2, pp. 592-596, 2010/02/10 2010.
    [16] N. A. Issa and R. Guckenberger, "Optical Nanofocusing on Tapered Metallic Waveguides," Plasmonics, journal article vol. 2, no. 1, pp. 31-37, 2007.
    [17] M. I. S. Tigran V. Shahbazyan, Plasmonics: Theory and Applications (Challenges and Advances in Computational Chemistry and Physics). Springer Netherlands, 2013, pp. XV, 577.
    [18] D. K. Gramotnev and S. I. Bozhevolnyi, "Nanofocusing of electromagnetic radiation," Nat Photon, Review vol. 8, no. 1, pp. 13-22, 01//print 2014.
    [19] K. V. Nerkararyan, "Superfocusing of a surface polariton in a wedge-like structure," Physics Letters A, vol. 237, no. 1–2, pp. 103-105, 12/29/ 1997.
    [20] A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," Journal of Applied Physics, vol. 87, no. 8, pp. 3785-3788, 2000.
    [21] K. Kazuyoshi, Y. Kazuhiro, T. Junichi, and O. Akira, "Superfocusing modes of surface plasmon polaritons in a wedge-shaped geometry obtained by quasi-separation of variables," Journal of Physics A: Mathematical and Theoretical, vol. 41, no. 29, p. 295401, 2008.
    [22] Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, "Plasmonic Nearfield Scanning Probe with High Transmission," Nano Letters, vol. 8, no. 9, pp. 3041-3045, 2008/09/10 2008.
    [23] L. Aeschimann et al., "Characterization and fabrication of fully metal-coated scanning near-field optical microscopy SiO2 tips," J. Microsc., vol. 209, no. Pt 3, pp. 182-7, Mar 2003.
    [24] E. Descrovi, L. Vaccaro, W. Nakagawa, L. Aeschimann, U. Staufer, and H. P. Herzig, "Collection of transverse and longitudinal fields by means of apertureless nanoprobes with different metal coating characteristics," Appl. Phys. Lett., vol. 85, no. 22, pp. 5340-5342, 2004.
    [25] H. G. Frey, C. Bolwien, A. Brandenburg, R. Ros, and D. Anselmetti, "Optimized apertureless optical near-field probes with 15 nm optical resolution," Nanotechnology, vol. 17, no. 13, p. 3105, 2006.
    [26] R. Guanghao, C. Weibin, L. Yonghua, W. Pei, M. Hai, and Z. Qiwen, "Plasmonic near-field probe using the combination of concentric rings and conical tip under radial polarization illumination," J. Opt., vol. 12, no. 3, p. 035004, 2010.
    [27] F. De Angelis et al., "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat. Nano., 10.1038/nnano.2009.348 vol. 5, no. 1, pp. 67-72, 01//print 2010.
    [28] Y. Lee, A. Alu, and J. X. J. Zhang, "Efficient apertureless scanning probes using patterned plasmonic surfaces," Opt. Express, vol. 19, no. 27, p. 25990, 2011/12/19 2011.
    [29] A. Weber-Bargioni et al., "Hyperspectral nanoscale imaging on dielectric substrates with coaxial optical antenna scan probes," Nano Lett., vol. 11, no. 3, pp. 1201-7, Mar 09 2011.
    [30] D. Auwärter, J. Mihaljevic, A. J. Meixner, C. Zimmermann, and S. Slama, "Coupling of optical far fields into apertureless plasmonic nanofiber tips," Phys. Rev. A, vol. 88, no. 6, p. 063830, 12/18/ 2013.
    [31] S. Cherukulappurath, T. W. Johnson, N. C. Lindquist, and S. H. Oh, "Template-stripped asymmetric metallic pyramids for tunable plasmonic nanofocusing," Nano Lett., vol. 13, no. 11, pp. 5635-41, 2013/11/13 2013.
    [32] B. N. Tugchin et al., "Plasmonic Tip Based on Excitation of Radially Polarized Conical Surface Plasmon Polariton for Detecting Longitudinal and Transversal Fields," ACS Photonics, vol. 2, no. 10, pp. 1468-1475, 2015/10/21 2015.
    [33] O. Tanirah, D. P. Kern, and M. Fleischer, "Fabrication of a plasmonic nanocone on top of an AFM cantilever," Microelectr. Eng., vol. 141, pp. 215-218, 6/15/ 2015.
    [34] C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, "Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source," Nano Lett., vol. 7, no. 9, pp. 2784-8, Sep 2007.
    [35] C. C. Neacsu, S. Berweger, R. L. Olmon, L. V. Saraf, C. Ropers, and M. B. Raschke, "Near-field localization in plasmonic superfocusing: a nanoemitter on a tip," Nano Lett., vol. 10, no. 2, pp. 592-6, Feb 10 2010.
    [36] Y. Wang, Y.-Y. Huang, and X. Zhang, "Plasmonic nanograting tip design for high power throughput near-field scanning aperture probe," Optics Express, vol. 18, no. 13, pp. 14004-14011, 2010/06/21 2010.
    [37] Y. Lee, A. Alu, and J. X. J. Zhang, "Efficient apertureless scanning probes using patterned plasmonic surfaces," Optics Express, vol. 19, no. 27, pp. 25990-25999, 2011/12/19 2011.
    [38] Y. Lee and X. Zhang, "Designs of apertureless probe with nano-slits for near-field light localization and concentration," Optics Communications, vol. 285, no. 16, pp. 3373-3377, 7/15/ 2012.
    [39] R. Hooke, 1665 Micrographia. London: Martyn and Allestry., 2003.
    [40] A. J. North, "Seeing is believing? A beginners' guide to practical pitfalls in image acquisition," The Journal of Cell Biology, vol. 172, no. 1, p. 9, 2006.
    [41] Thorlabs' Confocal Microscopy System mounted on an inverted Nikon microscope. Available: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=5696#ad-image-0
    [42] R. Zhang et al., "Chemical mapping of a single molecule by plasmon-enhanced Raman scattering," Nature, Letter vol. 498, no. 7452, pp. 82-86, 06/06/print 2013.
    [43] M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano Letters, vol. 6, no. 7, pp. 1307-1310, 2006/07/01 2006.
    [44] S. Pereira. (2014). Graphics and the Nobel Prize for Chemistry. Available: http://visualoop.com/blog/26186/graphics-and-the-nobel-prize-for-chemistry
    [45] R. Hooke, Micrographia (1665). AppLife, 2014.
    [46] E. H. Synge, "XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 6, no. 35, pp. 356-362, 1928/08/01 1928.
    [47] J. A. O’Keefe, "Resolving Power of Visible Light," Journal of the Optical Society of America, vol. 46, no. 5, pp. 359-359, 1956/05/01 1956.
    [48] E. A. Ash and G. Nicholls, "Super-resolution Aperture Scanning Microscope," Nature, vol. 237, no. 5357, pp. 510-512, 1972/06/01 1972.
    [49] G. Binnig and H. Rohrer, "Scanning tunneling microscopy," IBM J. Res. Dev., vol. 30, no. 4, pp. 355-369, 1986.
    [50] D. W. Pohl, W. Denk, and M. Lanz, "Optical stethoscopy: Image recording with resolution λ/20," Applied Physics Letters, vol. 44, no. 7, pp. 651-653, 1984.
    [51] E. H. Stelzer, "Practical limits to resolution in fluorescence light microscopy," pp. 12.1-12.9, 2000.
    [52] N. S. Claxton, T. J. Fellers, and M. W. Davidson, "Laser scanning confocal microscopy," 2006.
    [53] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, "Surface Studies by Scanning Tunneling Microscopy," Physical Review Letters, vol. 49, no. 1, pp. 57-61, 07/05/ 1982.
    [54] G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, "Tunneling through a controllable vacuum gap," Applied Physics Letters, vol. 40, no. 2, pp. 178-180, 1982/01/15 1982.
    [55] K. A. Kholmurodov, Maria; Yasuoka, Kenji, "Molecular dynamics simulations of valinomycin interactions with potassium and sodium ions in water solvent," vol. 1, no. 3, pp. 145-240, 2010.
    [56] R. Bhadauria and N. Aluru, "A quasi-continuum hydrodynamic model for slit shaped nanochannel flow," vol. 139, no. 7, p. 074109, 2013.
    [57] B. Hecht et al., "Scanning near-field optical microscopy with aperture probes: Fundamentals and applications," The Journal of Chemical Physics, vol. 112, no. 18, pp. 7761-7774, 2000.
    [58] H. A. Bethe, "Theory of Diffraction by Small Holes," Physical Review, vol. 66, no. 7-8, pp. 163-182, 10/01/ 1944.
    [59] G. A. Valaskovic, M. Holton, and G. H. Morrison, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Applied Optics, vol. 34, no. 7, pp. 1215-1228, 1995/03/01 1995.
    [60] H. Furukawa and S. Kawata, "Local field enhancement with an apertureless near-field-microscope probe," Opt. Commun., vol. 148, no. 4-6, pp. 221-224, 1998/03/15/ 1998.
    [61] F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near‐field optical microscope," Appl. Phys. Lett., vol. 65, no. 13, pp. 1623-1625, 1994.
    [62] J. Le Gall, M. Olivier, and J. J. Greffet, "Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton," Phys. Rev. B, vol. 55, no. 15, pp. 10105-10114, 04/15/ 1997.
    [63] A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express, vol. 15, no. 14, pp. 8550-65, Jul 09 2007.
    [64] Y. C. Chang, J. Y. Chu, T. J. Wang, M. W. Lin, J. T. Yeh, and J. K. Wang, "Fourier analysis of surface plasmon waves launched from single nanohole and nanohole arrays: unraveling tip-induced effects," Opt. Express, vol. 16, no. 2, pp. 740-7, Jan 21 2008.
    [65] B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun., vol. 182, no. 4-6, pp. 321-328, 8/15/ 2000.
    [66] M. B. Raschke and C. Lienau, "Apertureless near-field optical microscopy: tip–sample coupling in elastic light scattering," Appl. Phys. Lett., vol. 83, no. 24, pp. 5089-5091, 2003.
    [67] A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett., vol. 87, no. 8, p. 081103, 2005.
    [68] F. Huth et al., "Resonant antenna probes for tip-enhanced infrared near-field microscopy," Nano Lett., vol. 13, no. 3, pp. 1065-72, Mar 13 2013.
    [69] L. Wang and X. G. Xu, "Scattering-type scanning near-field optical microscopy with reconstruction of vertical interaction," Nat. Commun., Article vol. 6, p. 8973, Nov 23 2015.
    [70] S. Patanè, P. Gucciardi, M. Labardi, and M. Allegrini, "Apertureless near-field optical microscopy," Rivista del Nuovo Cimento, vol. 27, pp. 1-46, 2004.
    [71] R. Hillenbrand and F. Keilmann, "Complex Optical Constants on a Subwavelength Scale," Physical Review Letters, vol. 85, no. 14, pp. 3029-3032, 10/02/ 2000.
    [72] F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 362, no. 1817, pp. 787-805, 2004.
    [73] T. Schmid, L. Opilik, C. Blum, and R. Zenobi, "Nanoscale Chemical Imaging Using Tip-Enhanced Raman Spectroscopy: A Critical Review," Angewandte Chemie International Edition, vol. 52, no. 23, pp. 5940-5954, 2013.
    [74] L. Novotny and B. Hecht, Principles of Nano-Optics, 2 ed. Cambridge: Cambridge University Press, 2012.
    [75] L. Novotny, R. X. Bian, and X. S. Xie, "Theory of Nanometric Optical Tweezers," Physical Review Letters, vol. 79, no. 4, pp. 645-648, 07/28/ 1997.
    [76] A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Applied Optics, vol. 37, no. 22, pp. 5271-5283, 1998/08/01 1998.
    [77] W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nat Nano, 10.1038/nnano.2008.303 vol. 3, no. 12, pp. 733-737, 12//print 2008.
    [78] F. Zenhausern, M. P. O’Boyle, and H. K. Wickramasinghe, "Apertureless near‐field optical microscope," Applied Physics Letters, vol. 65, no. 13, pp. 1623-1625, 1994.
    [79] K. V. Nerkararyan, "Superfocusing of a surface polariton in a wedge-like structure," Phys. Lett. A, vol. 237, no. 1-2, pp. 103-105, 12/29/ 1997.
    [80] L. Novotny, R. X. Bian, and X. S. Xie, "Theory of nanometric optical tweezers," Phys. Rev. Lett., vol. 79, no. 4, pp. 645-648, 07/28/ 1997.
    [81] A. J. Babadjanyan, N. L. Margaryan, and K. V. Nerkararyan, "Superfocusing of surface polaritons in the conical structure," J. Appl. Phys., vol. 87, no. 8, pp. 3785-3788, 2000.
    [82] A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," J. Microscop., vol. 210, no. 3, pp. 220-224, 2003.
    [83] M. I. Stockman, "Nanofocusing of optical energy in tapered plasmonic waveguides," Phys. Rev. Lett., vol. 93, no. 13, p. 137404, Sep 24 2004.
    [84] N. A. Janunts, K. S. Baghdasaryan, K. V. Nerkararyan, and B. Hecht, "Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip," Opt. Commun., vol. 253, no. 1-3, pp. 118-124, 9/1/ 2005.
    [85] N. A. Issa and R. Guckenberger, "Optical nanofocusing on tapered metallic waveguides," Plasmonics, journal article vol. 2, no. 1, pp. 31-37, 2006.
    [86] K. Kazuyoshi, O. Akira, S. Atsushi, T. Junichi, S. Koji, and Y. Shiyoshi, "Superfocusing modes of surface plasmon polaritons in conical geometry based on the quasi-separation of variables approach," J. Phys. A: Math. Theoret., vol. 40, no. 41, p. 12479, 2007.
    [87] D. K. Gramotnev and S. I. Bozhevolnyi, "Nanofocusing of electromagnetic radiation," Nat. Photon., Review vol. 8, no. 1, pp. 13-22, 01//print 2013.
    [88] R. H. Jiang, H. C. Chou, J. Y. Chu, C. Chen, and T. J. Yen, "High-Efficiency and High-Resolution Apertureless Plasmonic Near-Field Probe Under Internal Illumination," in Proceedings, Nanoimaging and Nanospectroscopy IV, San Diego, CA, 2016, vol. 9925, p. 992509.
    [89] D. Pacifici, H. J. Lezec, H. A. Atwater, and J. Weiner, "Quantitative determination of optical transmission through subwavelength slit arrays in Ag films: Role of surface wave interference and local coupling between adjacent slits," Physical Review B, vol. 77, no. 11, p. 115411, 03/07/ 2008.
    [90] L. Novotny and N. van Hulst, "Antennas for light," Nat Photon, 10.1038/nphoton.2010.237 vol. 5, no. 2, pp. 83-90, 02//print 2011.
    [91] L. Novotny and N. van Hulst, "Antennas for light," Nat. Photon., 10.1038/nphoton.2010.237 vol. 5, no. 2, pp. 83-90, 02//print 2011.
    [92] G. A. Valaskovic, M. Holton, and G. H. Morrison, "Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes," Appl. Opt., vol. 34, no. 7, pp. 1215-28, Mar 01 1995.
    [93] U. C. Fischer and H. P. Zingsheim, "Submicroscopic pattern replication with visible light," J. Vac. Sci. Technol., vol. 19, no. 4, pp. 881-885, 1981/11/01 1981.
    [94] T. Held, S. Emonin, O. Marti, and O. Hollricher, "Method to produce high-resolution scanning near-field optical microscope probes by beveling optical fibers," Rev. Sci. Instr., vol. 71, no. 8, pp. 3118-3122, 2000/08/01 2000.
    [95] E. Betzig and R. J. Chichester, "Single molecules observed by near-field scanning optical microscopy," Science, 10.1126/science.262.5138.1422 vol. 262, no. 5138, pp. 1422-5, Nov 26 1993.
    [96] H. Gersen, M. F. Garcia-Parajo, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. Van Hulst, "Near-field effects in single molecule emission," J. Microsc., vol. 202, no. Pt 2, pp. 374-8, May 2001.
    [97] R. J. Moerland, N. F. van Hulst, H. Gersen, and L. Kuipers, "Probing the negative permittivity perfect lens at optical frequencies using near-field optics and single molecule detection," Opt. Express, vol. 13, no. 5, p. 1604, 2005/03/07 2005.
    [98] C. Haumann et al., "Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes," Rev. Sci. Instr., vol. 76, no. 3, p. 033704, 2005/03/01 2005.
    [99] B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature, 10.1038/20154 vol. 399, no. 6732, pp. 134-137, 05/13/print 1999.
    [100] B. Knoll, F. Keilmann, A. Kramer, and R. Guckenberger, "Contrast of microwave near-field microscopy," Appl. Phys. Lett., vol. 70, no. 20, pp. 2667-2669, 1997/05/19 1997.
    [101] T. Umakoshi, Y. Saito, and P. Verma, "Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy," Nanoscale, 10.1039/C5NR08548A vol. 8, no. 10, pp. 5634-40, Mar 14 2016.
    [102] G. Jozwiak, A. Henrykowski, A. Masalska, T. Gotszalk, I. Ritz, and H. J. a. p. a. Steigmann, "The regularized blind tip reconstruction algorithm as a scanning probe microscopy tip metrology method," 2011.
    [103] P. Colombi, I. Alessandri, P. Bergese, S. Federici, and L. E. Depero, "Self-assembled polystyrene nanospheres for the evaluation of atomic force microscopy tip curvature radius," Measurement Science and Technology, vol. 20, no. 8, p. 084015, 2009.
    [104] P.-E. Mazeran, L. Odoni, and J.-L. Loubet, "Curvature radius analysis for scanning probe microscopy," Surface Science, vol. 585, no. 1, pp. 25-37, 2005/07/01/ 2005.
    [105] L. S. Dongmo, J. S. Villarrubia, S. N. Jones, T. B. Renegar, M. T. Postek, and J. F. Song, "Experimental test of blind tip reconstruction for scanning probe microscopy," Ultramicroscopy, vol. 85, no. 3, pp. 141-153, 2000/11/01/ 2000.
    [106] H. Gersen, M. F. García-Parajó, L. Novotny, J. A. Veerman, L. Kuipers, and N. F. Van Hulst, "Near-field effects in single molecule emission," Journal of Microscopy, vol. 202, no. 2, pp. 374-378, 2001.
    [107] A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, "Plasmon-coupled tip-enhanced near-field optical microscopy," Journal of Microscopy, vol. 210, no. 3, pp. 220-224, 2003.
    [108] A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Optics Express, vol. 15, no. 14, pp. 8550-8565, 2007/07/09 2007.
    [109] J.-Y. Chu and J.-K. Wang, "High-Resolution Near-Field Optical Microscopy: A Sub-10 Nanometer Probe for Surface Electromagnetic Field and Local Dielectric Trait," Advanced Photonic Sciences, p. 323, 2012.
    [110] G. M. Lerman, A. Yanai, and U. Levy, "Demonstration of nanofocusing by the use of plasmonic lens illuminated with radially polarized light," Nano Lett., vol. 9, no. 5, pp. 2139-43, May 2009.
    [111] W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, "Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination," Nano Lett., vol. 9, no. 12, pp. 4320-5, Dec 2009.
    [112] C.-H. Chuang and Y.-L. Lo, "An analysis of heterodyne signals in apertureless scanning near-field optical microscopy," Opt. Express, vol. 16, no. 22, pp. 17982-18003, 2008/10/27 2008.
    [113] U. Schröter and D. Heitmann, "Surface-plasmon-enhanced transmission through metallic gratings," Phys. Rev. B, vol. 58, no. 23, pp. 15419-15421, 12/15/ 1998.
    [114] Y. Inouye, "Apertureless Metallic Probes for Near-Field Microscopy," in Near-Field Optics and Surface Plasmon Polaritons, S. Kawata, Ed. Berlin, Heidelberg: Springer, 2001, pp. 29-48.
    [115] T. König and S. Santer, "Visualization of surface plasmon interference by imprinting intensity patterns on a photosensitive polymer," Nanotechnology, vol. 23, no. 48, p. 485304, 2012.
    [116] W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature, 10.1038/nature01937 vol. 424, no. 6950, pp. 824-30, Aug 14 2003.
    [117] W. Bao et al., "Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide," Nat. Commun., Article vol. 6, p. 7993, 08/13/online 2015.
    [118] R. Zhang et al., "Chemical mapping of a single molecule by plasmon-enhanced Raman scattering," Nature, Letter vol. 498, no. 7452, pp. 82-6, Jun 06 2013.
    [119] T. Deckert-Gaudig, A. Taguchi, S. Kawata, and V. Deckert, "Tip-enhanced Raman spectroscopy - from early developments to recent advances," Chem. Soc. Rev., 10.1039/C7CS00209B vol. 46, no. 13, pp. 4077-4110, 2017.
    [120] P. Verma, "Tip-enhanced raman spectroscopy: technique and recent advances," Chem. Rev., vol. 117, no. 9, pp. 6447-6466, May 10 2017.
    [121] D. W. Shipp, F. Sinjab, and I. Notingher, "Raman spectroscopy: techniques and applications in the life sciences," Adv. Opt. Photonics, vol. 9, no. 2, pp. 315–428, 2017/06/30 2017.
    [122] M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," Journal of the American Chemical Society, vol. 99, no. 15, pp. 5215-5217, 1977/06/01 1977.
    [123] L. Tang et al., "A Novel SERS Substrate Platform: Spatially Stacking Plasmonic Hotspots Films," Nanoscale Research Letters, vol. 14, no. 1, p. 94, 2019/03/13 2019.
    [124] M. Moskovits, "Surface-enhanced spectroscopy," Reviews of Modern Physics, vol. 57, no. 3, pp. 783-826, 07/01/ 1985.
    [125] D. L. Jeanmaire and R. P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, no. 1, pp. 1-20, 1977/11/10/ 1977.
    [126] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode," Chemical Physics Letters, vol. 26, no. 2, pp. 163-166, 1974/05/15/ 1974.
    [127] J. A. Dieringer et al., "Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications," Faraday Discussions, vol. 132, pp. 9-26, 2006.
    [128] T. Deckert-Gaudig, A. Taguchi, S. Kawata, and V. Deckert, "Tip-enhanced Raman spectroscopy - from early developments to recent advances," Chem. Soc. Rev., 10.1039/C7CS00209B vol. 46, no. 13, pp. 4077–4110, 2017.
    [129] A. Hartschuh, "Tip-Enhanced Near-Field Optical Microscopy," Angew. Chem., Int. Ed., vol. 47, no. 43, pp. 8178–8191, 2008.
    [130] B. S. Yeo, J. Stadler, T. Schmid, R. Zenobi, and W. H. Zhang, "Tip-enhanced Raman Spectroscopy - Its status, challenges and future directions," Chem. Phys. Lett., vol. 472, no. 1-3, pp. 1–13, Apr 2009.
    [131] R. M. Stöckle, Y. D. Suh, V. Deckert, and R. Zenobi, "Nanoscale chemical analysis by tip-enhanced Raman spectroscopy," Chemical Physics Letters, vol. 318, no. 1, pp. 131-136, 2000/02/18/ 2000.
    [132] M. S. Anderson, "Locally enhanced Raman spectroscopy with an atomic force microscope," Applied Physics Letters, vol. 76, no. 21, pp. 3130-3132, 2000/05/22 2000.
    [133] N. Hayazawa, Y. Inouye, Z. Sekkat, and S. Kawata, "Metallized tip amplification of near-field Raman scattering," Optics Communications, vol. 183, no. 1, pp. 333-336, 2000/09/01/ 2000.
    [134] N. Anderson, A. Hartschuh, S. Cronin, and L. Novotny, "Nanoscale Vibrational Analysis of Single-Walled Carbon Nanotubes," Journal of the American Chemical Society, vol. 127, no. 8, pp. 2533-2537, 2005/03/01 2005.
    [135] C. C. Neacsu, J. Dreyer, N. Behr, and M. B. Raschke, "Scanning-probe Raman spectroscopy with single-molecule sensitivity," Physical Review B, vol. 73, no. 19, p. 193406, 05/23/ 2006.
    [136] S. Berweger, C. C. Neacsu, Y. Mao, H. Zhou, S. S. Wong, and M. B. Raschke, "Optical nanocrystallography with tip-enhanced phonon Raman spectroscopy," Nature Nanotechnology, vol. 4, p. 496, 07/26/online 2009.
    [137] C. Chen, N. Hayazawa, and S. Kawata, "A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient," Nat. Commun., Article vol. 5, p. 3312, 02/12/online 2014.
    [138] R. Zhang et al., "Chemical mapping of a single molecule by plasmon-enhanced Raman scattering," Nature, vol. 498, no. 7452, pp. 82–86, Jun 2013.
    [139] B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Nanoscale Probing of Adsorbed Species by Tip-Enhanced Raman Spectroscopy," Physical Review Letters, vol. 92, no. 9, p. 096101, 03/02/ 2004.
    [140] L. Gao, H. Zhao, T. Li, P. Huo, D. Chen, and B. Liu, "Atomic Force Microscopy Based Tip-Enhanced Raman Spectroscopy in Biology," Int. J. Mol. Sci., vol. 19, no. 4, p. 1193, 2018.
    [141] R. Meyer, X. Yao, and V. Deckert, "Latest instrumental developments and bioanalytical applications in tip-enhanced Raman spectroscopy," TrAC, Trends Anal. Chem., vol. 102, pp. 250–258, 2018/05/01/ 2018.
    [142] P. Verma, "Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances," Chem. Rev., vol. 117, no. 9, pp. 6447–6466, 2017/05/10 2017.
    [143] U. Neugebauer et al., "On the Way to Nanometer-Sized Information of the Bacterial Surface by Tip-Enhanced Raman Spectroscopy," ChemPhysChem, vol. 7, no. 7, pp. 1428-1430, 2006.
    [144] U. Neugebauer et al., "Towards a Detailed Understanding of Bacterial Metabolism—Spectroscopic Characterization of Staphylococcus Epidermidis," ChemPhysChem, vol. 8, no. 1, pp. 124-137, 2007.
    [145] E. Bailo and V. Deckert, "Tip-Enhanced Raman Spectroscopy of Single RNA Strands: Towards a Novel Direct-Sequencing Method," Angew. Chem., Int. Ed., vol. 47, no. 9, pp. 1658–1661, 2008.
    [146] D. Cialla et al., "Raman to the limit: tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus," J. Raman Spectrosc., vol. 40, no. 3, pp. 240–243, 2009.
    [147] E. Lipiec, R. Sekine, J. Bielecki, W. M. Kwiatek, and B. R. Wood, "Molecular Characterization of DNA Double Strand Breaks with Tip-Enhanced Raman Scattering," Angew. Chem., Int. Ed., vol. 53, no. 1, pp. 169–172, 2014.
    [148] G. Rusciano et al., "Nanoscale Chemical Imaging of Bacillus subtilis Spores by Combining Tip-Enhanced Raman Scattering and Advanced Statistical Tools," ACS Nano, vol. 8, no. 12, pp. 12300-12309, 2014/12/23 2014.
    [149] B. Pettinger, G. Picardi, R. Schuster, and G. Ertl, "Surface Enhanced Raman Spectroscopy: Towards Single Molecule Spectroscopy," Electrochemistry, vol. 68, pp. 942-949, 12/01 2000.
    [150] T. Umakoshi, Y. Saito, and P. Verma, "Highly efficient plasmonic tip design for plasmon nanofocusing in near-field optical microscopy," Nanoscale, 10.1039/C5NR08548A vol. 8, no. 10, pp. 5634-5640, 2016.
    [151] D. Sadiq, J. Shirdel, J. S. Lee, E. Selishcheva, N. Park, and C. Lienau, "Adiabatic Nanofocusing Scattering-Type Optical Nanoscopy of Individual Gold Nanoparticles," Nano Letters, vol. 11, no. 4, pp. 1609-1613, 2011/04/13 2011.
    [152] R.-H. Jiang, C. Chen, D.-Z. Lin, H.-C. Chou, J.-Y. Chu, and T.-J. Yen, "Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio," Nano Letters, vol. 18, no. 2, pp. 881-885, 2018/02/14 2018.
    [153] S. Berweger, J. M. Atkin, R. L. Olmon, and M. B. Raschke, "Adiabatic Tip-Plasmon Focusing for Nano-Raman Spectroscopy," The Journal of Physical Chemistry Letters, vol. 1, no. 24, pp. 3427-3432, 2010/12/16 2010.
    [154] F. De Angelis et al., "Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons," Nat Nano, 10.1038/nnano.2009.348 vol. 5, no. 1, pp. 67-72, 01//print 2010.
    [155] X. Ma et al., "Toward High-Contrast Atomic Force Microscopy-Tip-Enhanced Raman Spectroscopy Imaging: Nanoantenna-Mediated Remote-Excitation on Sharp-Tip Silver Nanowire Probes," Nano Letters, 2018/12/04 2018.
    [156] Z. Yang, J. Aizpurua, and H. Xu, "Electromagnetic field enhancement in TERS configurations," J. Raman Spectrosc., vol. 40, no. 10, pp. 1343–1348, 2009.
    [157] J. Stadler, B. Oswald, T. Schmid, and R. Zenobi, "Characterizing unusual metal substrates for gap-mode tip-enhanced Raman spectroscopy," J. Raman Spectrosc., vol. 44, no. 2, pp. 227–233, 2013.
    [158] S. F. Becker et al., "Gap-Plasmon-Enhanced Nanofocusing Near-Field Microscopy," ACS Photonics, vol. 3, no. 2, pp. 223-232, 2016/02/17 2016.
    [159] R.-H. Jiang, C. Chen, D.-Z. Lin, H.-C. Chou, J.-Y. Chu, and T.-J. Yen, "Near-Field Plasmonic Probe with Super Resolution and High Throughput and Signal-to-Noise Ratio," Nano Lett., vol. 18, no. 2, pp. 881–885, 2018/02/14 2018.
    [160] S. Trautmann et al., "A classical description of subnanometer resolution by atomic features in metallic structures," Nanoscale, vol. 9, no. 1, pp. 391-401, 2017.
    [161] A. I. López-Lorente, B. M. Simonet, and M. Valcárcel, "Raman spectroscopic characterization of single walled carbon nanotubes: influence of the sample aggregation state," Analyst, 10.1039/C3AN00642E vol. 139, no. 1, pp. 290-298, 2014.
    [162] B. Pettinger, P. Schambach, C. J. Villagomez, and N. Scott, "Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules," in Annual Review of Physical Chemistry, Vol 63, vol. 63, M. A. Johnson and T. J. Martinez, Eds. (Annual Review of Physical Chemistry, 2012, pp. 379-399.
    [163] B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, "Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy," Physical Review Letters, vol. 92, no. 9, Mar 2004, Art. no. 096101.
    [164] V. Lotito and T. Zambelli, "Self-assembly and nanosphere lithography for large-area plasmonic patterns on graphene," Journal of Colloid and Interface Science, vol. 447, pp. 202-210, 6/1/ 2015.
    [165] C. Haumann et al., "Stand-alone device for the electrolytic fabrication of scanning near-field optical microscopy aperture probes," Review of Scientific Instruments, vol. 76, no. 3, p. 033704, 2005/03/01 2005.
    [166] U. C. Fischer, J. Heimel, H.-J. Maas, M. Hartig, S. Hoeppener, and H. Fuchs, "Latex bead projection nanopatterns," Surface and Interface Analysis, vol. 33, no. 2, pp. 75-80, 2002.
    [167] U. C. Fischer and H. P. Zingsheim, "Submicroscopic pattern replication with visible light," Journal of Vacuum Science and Technology, vol. 19, no. 4, pp. 881-885, 1981/11/01 1981.

    無法下載圖示 全文公開日期 2024/12/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE