簡易檢索 / 詳目顯示

研究生: 吳珮琦
Pei-Ci Wu
論文名稱: 一個快速、穩定的不與障礙物相交之直角史坦納樹演算法
A Fast and Stable Algorithm for Obstacle-Avoiding Rectilinear Steiner Tree Construction
指導教授: 王廷基
Ting-Chi Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 27
中文關鍵詞: 史坦納樹
外文關鍵詞: Steiner tree
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在繞線這個領域,找到一個不與障礙物相交之直角史坦納樹是一個基本的問題。現在的設計內通常都含有許多直角的障礙物,例如區塊型模組、矽智財模組及預先繞線好的網路。因此,建造出一個不與障礙物相交的直角史坦納樹變成了一個很實際的問題。在這篇論文中,我們提出了一個很快速且穩定的演算法來解決此問題。我們分別使用了一個以分割作基礎的方法和使用螞蟻演算法為基礎的方法去建造一個不與障礙物相交的史坦納樹。除此之外,兩個簡單的演算法被用來將史坦納樹垂直水平化及加以改進線段長度。從我們的實驗結果可以看出,我們的演算法可以在很小的執行時間內找到很好的結果,即使是對於較大的測資,如接點和障礙物的個數都大於一百,我們的演算法依然可以做到。


    In routing, finding a rectilinear Steiner minimal tree (RSMT) is a fundamental problem. Today’s design often contains rectilinear obstacles, like macro cells, IP blocks, and pre-routed nets. Therefore obstacle-avoiding RSMT (OARSMT) construction becomes a very practical problem. In this thesis we present a fast and stable algorithm for this problem. We use a partitioning based method and an ant colony optimization based method to construct obstacle-avoiding Steiner minimal tree (OASMT). Besides, two heuristics are proposed to do the rectilinearization and refinement to further improve wirelegnth. The experimental results show our algorithm achieves good wirelength results and the runtime is very small even for the larger cases each of which has both the number of terminals and the number of obstacles more than 100.

    摘要 iv Abstract v Contents vi List of Figures vii List of Tables viii Chapter 1 Introduction 1 Chapter 2 Problem Formulation 4 Chapter 3 Algorithm 5 A. Overview of our algorithm 5 B. Step1: Partitioning Terminals into a Set of Sub-trees 7 C. Step2 : Constructing a Spanning Graph 9 D. Step3: Merge: Ant-Colony Optimization Based Algorithm 10 E. Step4: Rectilinearization and Refinement 17 Chapter 4 Experimental Results 20 Chapter 5 Conclusion 25

    [1] M. R. Garey and D. S. Johnson, “The Rectilinear Steiner Tree Problem is NP-complete,” SIAM Journal on Applied Mathematics, vol. 32, pp. 826-834, 1977.
    [2] D. Warme, P. Winter, and M. Zachariasen, ”Geosteiner 3.1. package,” http://www.diku.dk/geosteiner/.
    [3] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang, “Closing the gap: Near-optimal Steiner trees in polynomial time,” IEEE Trans. Computer-Aided Design, vol. 13, pp. 1351-1365, 1994.
    [4] A. Kahng, I. Mandoiu, and A. Zelikovsky, “Highly scalable algorithms for rectilinear and octilinear Steiner trees,” in Proc. Asia and South Pacific Design Automation Conf., pp. 827-833, 2003.
    [5] Y. Hu, T. Jing, Z. Feng, X. Hong, X. Hu, and G. Yan, “ACO-Steiner: Ant Colony Optimization Based Rectilinear Steiner Minimal Tree Algorithm,” in Journal of Computer Science and Technology, pp. 147-152, 2006.
    [6] S. Das, S. V. Gosavi, W. H. Hsu, and S. A. Vaze, “An Ant Colony Approach for the Steiner Tree Problem,” in Proc. of the Genetic and Evolutionary Computation Conf., pp. 135, 2002.
    [7] Y. Hu, Z. Feng, T. Jing, X. Hong, Y. Yang, G. Yu, X. Hu, and G. Yan, “FORst: A 3-Step Heuristic for Obstacle-Avoiding Rectilinear Steiner Minimum Tree Construction,” in Journal of Information and Computational Science, pp. 107-116, 2004.
    [8] Y. Hu, T. Jing, X. Hong, Z. Feng, X. Hu, and G. Yan, “An-OARSMan: Obstacle-Avoiding Routing Tree Construction with Good Length Performance,” in Proc. Asia and South Pacific Design Automation Conf., pp. 7-12, 2005.
    [9] Y. F. Wu, P. Widmayer, M. D. F. Schlag, and C. K. Wong, “Rectilinear Shortest Paths and Minimum Spanning Trees in the Presence of Rectilinear Obstacles,” in IEEE Trans. on Computers, pp. 321-331, 1987.
    [10] Y. Shi, T. Jing, L. He, Z. Feng, and X. Hong, “CDCTree: Novel Obstacle-Avoiding Routing Tree Construction based on Current Driven Circuit Model,” in Proc. Asia and South Pacific Design Automation Conf., pp. 630-635, 2006.
    [11] Z. Shen, C. C.N. Chu, and Y. Li, “Efficient Rectilinear Steiner Tree Construction with Rectilinear Blockages,” in Proc. of International Conf. on Computer Design, pp. 38-44, 2005.
    [12] C.-W. Lin, S.-Y. Chen, C.-F. Li, Y.-W. Chang, and C.-L Yang, “Efficient Obstacle-Avoiding Rectilinear Steiner Tree Construction,“ in Proc. of Int. Symp. on Physical Design, pp. 127-134, 2007.
    [13] Z. Feng, Y. Hu, T. Jing, X. Hong, X. Hu, and G. Yan, “An O(nlogn) Algorithm for Obstacle-Avoiding Routing Tree Construction in the -Geometry Plane,” in Proc. of Int. Symp. on Physical Design, pp. 48-55, 2006.
    [14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms 2nd Edition, the MIT Press, 2001.
    [15] H. Zhou, N. Shenoy, and W. Nicholls, “Efficient Spanning Tree Construction Without Delaney Triangulation,” Information Processing Letter, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE