研究生: |
李易靜 Yi-Ching Lee |
---|---|
論文名稱: |
Al2O3/Y2O3/GaAs 異質磊晶結構之介面特性研究 Interfacial Investigation of Al2O3/Y2O3/GaAs Hetrostructures |
指導教授: |
洪銘輝
Ming-Hwei Hong 郭瑞年 Ray-Nien Kwo |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 44 |
中文關鍵詞: | 磊晶 、光電子能譜 、氧化釔 、高介電常數 |
外文關鍵詞: | epitaxy, photoelectrn spectroscopy, Y2O3, High-k |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在超高真空下,利用分子束磊晶及電子束蒸鍍的技術,高品質奈米氧化釔薄膜以及作為保護層的氧化鋁可成功成長於砷化鎵基材上。
本研究利用X光電子能譜分析技術(XPS)可詳盡地分析氧化釔薄膜與砷化鎵介面的化學反應。利用此分析技術配合電性比較,可知若氧化釔沒有保護層,由於其吸水性,暴露在空氣中後,會與水氣反應形成氫氧化釔,而在薄膜與基材介面形成氧化砷以及氧化鎵造成費米能階釘扎(Fermi-level pinning)。而若先成長約三奈米厚的氧化鋁作為氧化釔保護層,即使試片在去離子水中浸洗十分鐘後也未發現在薄膜中有氫氧化物形成,表示水氣無法進入到薄膜中進而破壞氧化釔與基材介面,也保證了氧化釔成長在砷化鎵上可得到良好的電性。
然而,室溫成長非晶氧化釔與高溫成長結晶氧化釔表現出大不相同的電性。高溫(約550 °C)成長的氧化釔電性較佳。假設氧化鋁之介電常數為8,結晶氧化釔之介電常數約8.6-11.1,而非晶氧化釔之介電常數則僅3.7-4.6。故我們懷疑因為成長溫度的不同造成氧化釔與砷化鎵之間化學反應相異,並影響二者電性。在本研究中,溫度效應造成氧化釔薄膜與砷化鎵的化學反應變化將藉由X光電子能譜分析技術探討,期望能找出造成電性差異的原因。
Freshly grown GaAs epi-layers were passivated with in situ electron beam evaporated nano-thick Y2O3 films in ultrahigh vacuum condition, followed by in situ deposition of a Al2O3 capped layer. The formation of hydroxides in the films and arsenic oxide at Y2O3/GaAs interface after exposed to air will be reported. In the Al2O3/Y2O3/GaAs hetero-structure, neither hydroxides, nor arsenic oxides, were found in the sample; even it was exposed to air and dipped in DI water for 10 min. Moreover, the hetero-structure exhibits well-behaved inversion and accumulation characteristics in capacitance-voltage curves.
However, Y2O3 in amorphous and crystalline phase deposited on GaAs at room and elevated temperatures capped with Al2O3 exhibit significant different electrical properties. Let the dielectric constant of Al2O3 be assumed about 8, then the dielectric constants of a-Y2O3 (1.8 nm) and c-Y2O3 (2.5 nm) are estimated to about 3.7-4.6 and 8.6-11.1, respectively. It is suggested that the different growth temperature results in different chemical reactions of Y2O3 with GaAs, thus affecting the electrical properties. XPS will be used to study the chemical reactions of Y2O3 on GaAs at different temperature.
[1] Intel Corporation, website: http://www.intel.com
[2] http://www.itrs.net
[3] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature (London) 399, 758 (1999); D. A. Muller, ‘‘Characterization and Metrology for ULSI Technology,’’ Intl. Conf. 2000, edited by D. G. Seiler, A. C. Diebold, T. J. Shaffner, R. McDonald, W. M. Bullis, P. J. Smith, and E. M. Secula, p. 500.
[4] S. Tang, R. M. Wallace, A. Seabaugh, and D. King-Smith, Appl. Surf. Sci. 135, 137 (1998).
[5] G. Timp, A. Agarwal, F. H. Baumann, T. Boone, M. Buonanno, R. Cirelli, V. Donnelly, M. Foad, D. Grant, M. Green et al., Tech. Dig. Int. Electron Devices Meet. 1997, p. 930.
[6] G. Timp, K. K. Bourdelle, J. E. Bower, F. H. Baumann, T. Boone, R. Cirelli, K. Evans-Lutterodt, J. Garno, A. Ghetti, H. Gossmann et al., Tech. Dig. Int. Electron Devices Meet. 1998, p. 615.
[7] G. Timp, J. Bude, K. K. Bourdelle, J. Garno, A. Ghetti, H. Gossmann, M.
Green, G. Forsyth, Y. Kim, R. Kleimann et al., Tech. Dig. Int. Electron Devices Meet. 1999, p. 55.
[8] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin, VLSI Tech. Dig. 2000, p. 90.
[9] T. Ghani, K. Mistry, P. Packan, S. Thompson, M. Stettler, S. Tyagi, and M. Bohr, Tech. Dig. VLSI Symp. 2000, p. 174; R. R. Chau, J. Kavalieros, B. Roberds, R. Schenker, D. Lionberger, D. Barlage, B. Doyle, R. Arghavani, A. Murthy, and G. Dewey, Tech. Int. Electron Devices Meet. 2000, p. 45.
[10] H. Iwai, H. S. Momose, and S. Ohmi, Proc.-Electrochem. Soc. 2000-2, p. 3.
[11] Y. C. Wang, M. Hong, J. M. Kuo, J. P. Mannaerts, J. Kwo, H. S. Tsai, J. J. Krajewski, J. S. Weiner, Y. K. Chen, and A. Y. Cho, Mater. Res. Soc. Symp. Proc. 573, 219 (1999).
[12] F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, Solid State Electron, 41 1751(1997).
[13] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, Science 283, 1897 (1999).
[14] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, and P. Chang, Appl. Phys. Lett. 87, 252104 (2005).
[15] P. D. Ye,a) G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, Appl. Phys. Lett. Vol. 83, No. 1, (2003)
[16] Y. Guyot, R. Moncorge, L. D. Merkle, A. Pinto, B. McIntosh, H. Verdun, Opt. Mater. 5, 127 (1996)
[17] H. Fukumoto, T. Imura, and T. Osaka, Appl. Phys. Lett. 55, 360 (1989)
[18] I. Barin, Thermochemical Data of Pure Substances (VCH Verlagsgesellschaft, Weinheim, Germany, 1989)
[19] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, J. P. Mannaerts, T. Boone, J. J. Krajewski, A. M. Sergent, and J. M. Rosamilia, Appl. Phys. Lett. 77, 130, (2000).
[20] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, and J. M. Rosamilia, J. Appl. Phys., 89, 7, 1 April 2001.
[21] W. E. Spicer, I. Lindau, P. Skeath, and C. Y. Su, J. Vac. Sci. Technol. 17, 1019
(1980).
[22] M. A. Herman, H. Sitter, Molecular Beam Epitaxy- Fundamentals and Current Status, Springer-Verlag Berlin Heidelberg 1989
[23] S.M. Sze, Semiconductor Devices: Physics and Technology, Second Edition, Wiley (2001)
[24] K. Tsubouchi, I. Ohkubo, T. Harada, H. Kumigashira, Y. Matsumoto, T. Ohnishi, M. Lippmaa, H. Koinuma, and M. Oshima, Materials Science and Engineering B, 148, 16–18 (2008).
[25] T. Nishinaga, Journal of Crystal Growth, 146, 326-333(1995)
[26] D. Keith Bowen and Brian K. Tanner, High Resolution X-ray Diffractometry and Topography, Taylor & Francis (2002)
[27] John C. Vickerman, Surface analysis-The principal Techniques, John Wiley & Sons Ltd (2003).
[28] John F. Watts, John Wolstenholme, ‘An introduction to Surface analysis by XPS and AES’, John Wiley & Sons Ltd (2003)
[29] M. P. Seah and W.A. Dench, Quantitative electron spectroscopy of surface: A standard data base for electron inelastic mean free path in solids, Surf. Interface Anal., 1, 2-11 (1979).