研究生: |
普拉卡 Jadhav, Prakash |
---|---|
論文名稱: |
以炔類和丙二烯衍生物金催化環化合成多取代有機骨架分子 Gold Catalyzed Annulations of Alkynes and Allenes for the Synthesis of Highly Functionalized Organic Frameworks |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
鄭建鴻
Cheng, Chien-Hong 彭之皓 Peng, Chi-How 吳明忠 Wu, Ming-Jung 謝仁傑 Hsieh, Jen-Chieh |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 638 |
中文關鍵詞: | 金催化的環狀物 、炔烴 、丙二烯 、有機骨架 |
外文關鍵詞: | Gold Catalyzed Annulations, Alkynes, Allenes, Organic Frameworks |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文討論利用炔類和丙二烯衍生物作為起始物金催化環化合成多取代的有機骨架分子。利用這些金屬可使易取得的起始物進行溫和、具選擇性且高效率的轉換,合成多種異原子環化產物。本論文共分為四章以利於理解。
第一章包含利用一個丙二烯、兩個亞硝基苯和一個缺電子的烯類化合物進行環化反應(不需使用金屬),可具選擇性的得到雙異噁唑烷衍生物,反應過程中,首先形成4-亞胺氧化物異噁唑烷,接著與缺電子的烯類進行偶級[3 + 2]環化加成反應,為了強調反應的可用性,使用了5-丙二烯取代-1-烯類化合物與亞硝基苯進行環化反應,也可以得到高位向選擇性的雙異噁唑烷理想產物。由兩種系統得到的雙異噁唑烷可利用鋅 / 甲醇還原誘導氮氧鍵斷裂,具選擇性的得到鏈狀多胺基酸。
第二章包含一個新的[4 + 2]環化反應,可具高度反位向選擇性的得到二氫喹啉衍生物,本環化反應可與碳烯在環狀和非環狀狀態下進行,反應首先從α-烷基金碳烯和苯並異噁唑形成亞胺,接著羰基-烯胺反應得到二氫喹啉衍生物。這系統呈現了第一個藉由另一個基質化合物的α-烷基金碳烯碳氫活化。
第三章包含利用炔酰胺和1,2-苯並異噁唑的兩種環化反應,可藉由不同配體控制化學選擇性。藉由IPrAuCl/AgNTf2 可使芳香環取代的炔酰胺進行 [5 + 2]環化反應,然而使用P(t-Bu)2(o-biphenyl)AuCl/AgNTf2 改變了原來炔酰胺的化學選擇性,使之進行[5 + 1]環化反應。碳-13標定實驗確認了1,2-磺胺轉移會參與在[5 + 1]環化反應中。我們推測出機構來合理化這兩個環化反應。
第四章包含金催化活化碳氫鍵環化以苯並異噁唑和6-丙二烯-1-炔類化合物進行簡單、具彈性、符合原子經濟的一步反應,得到2,3取代的吲哚衍生物。中間體α-亞胺金碳烯是藉由苯並異噁唑的鄰位芳香環碳氫活化分子間反應得到,接著吲哚三號碳位置會進行分子內攻擊丙二烯基sp2的碳原子,以高區域選擇性和位向選擇性得到2,3取代的吲哚衍生物。
This dissertation describes gold catalyzed annulations of alkynes and allenes for the synthesis of highly functionalized organic frameworks. The use of these metals enable mild, selective and efficient transformation to give a range of heterocyclic products from readily available substrates. This thesis is divided into four chapters for ease of understanding.
Chapter one is comprised of metal-free annulations between one allene, two nitrosoarenes and one electrondeficient alkene to afford bis(isoxazolidine) derivatives stereoselectively. This process involves an initial formation of isoxazolidin-4-imine oxides, followed by their dipolar [3 + 2]-cycloaddition with electrondeficient alkenes. To highlight the utility, the annulations of 5-alleneyl-1-enes with nitrosoarenes were also feasible to afford the desired bis(isoxazolidine) products with excellent stereocontrol. The resulting bis(isoxazolidine) products produced from two systems were reduced with Zn/MeOH to induce reductive N–O cleavages, yielding branched polyaminols stereoselectively.
Chapter two is comprised of new (4 + 2)-annulations of dihydroquinoline derivatives with high anti-stereoselectivity. The annulations are operable with carbenes in both acyclic and cyclic forms. This reaction sequence involves an initial formation of imines from a- alkylgold carbenes and benzisoxazoles, followed by a novel carbonyl-enamine reaction to yield 3,4- dihydroquinoline derivatives. This system presents the first alkyl C–H reactivity of a-alkyl gold carbenes with an external substrate.
Chapter three is comprised of two distinct annulations between ynamides and 1,2-benzisoxazoles with chemoselectivity controlled by ligands. With IPrAuCl/AgNTf2, arylsubstituted ynamides undergo [5+2]-annulation reactions whereas P(t-Bu)2(o-biphenyl)AuCl/AgNTf2 alters the chemoselectivity of the same ynamides to implement [5+1]-annulation reactions. 13C-labeling experiments confirm that a 1,2-sulfonamide shift is involved in the [5+1]-annulation process. A plausible mechanism is postulated to rationalize the mechanisms of the two annulations.
Chapter four is comprised gold-catalyzed C-H annulation/hydroarylation between anthranils and 6-allenyl-1-ynes offers a facile, flexible, and atom economical one-step route to 2,3-fused Indole derivatives. An intermediate α-imino gold carbene generated by an intermolecular reaction promotes ortho-aryl C-H functionalization of anthranils then intramolecular attack of the indole C3 carbon atom with allenyl sp2 carbon atom to forms 2,3-fused indole derivatives with high regio and stereoselectivity.
References:
1.1. Chapter 1:
[1] K. V. Gothelf, K. A. Jørgensen, Chem. Commun. 2000, 0, 1449−1458.
[2] a) R. B. Woodward, R. Hoffmann, The Conservation of Orbital Symmetry. Verlag Chemie; 1970; b) L. Fleming, Frontier Orbitals and Organic Chemical Reactions. John Wiley & Sons: London; 1977.
[3] S.-I. Murahashi, H. Mitsui, T. Shiota, T. Tsuda, S. Watanabe, J. Org. Chem. 1990, 55, 1736−1744.
[4] T. Hashimoto, K. Maruoka, Chem. Rev., 2015, 115, 366–5412.
[5] T. B. Nguyen, A. Martel, R. Dhal, and G. Dujardin, Org. Lett., 2008, 10, 4493- 4496
[6] For the cycloaddition of ketonitrones with alkenes, see selected examples: (a) M. Frederickson, Tetrahedron 1997, 53, 403; (b) T. Q. Tran, V. V. Diev, G. L. Starova, V. V. Gurzhiy and A. P. Molchanov, Eur. J. Org. Chem., 2012, 2054; (c) M. Burdisso, R. Gandolfi, P. Gandilfi and P. Grünanger, Tetrahedron, 1989, 45, 5579.
[7] For the formal 1,3-DC reaction of an R. R-disubstituted nitrone to alkynes, see: (a) F. Cantagrel, S. Pinet, Y. Gimbert, P. Y. Chavant, Eur. J. Org. Chem. 2005, 2694; (b) A. PernetPoil-Chevrier, F. Cantagrel, K. Le Jeune, C. Philouze, P. Y. Chavant, Tetrahedron: Asymmetry, 2006, 17, 1969; (c) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot and J. Martinez, Chem. Rev., 2016, 116, 15235; (d) A. Badoiu, Org. Biomol. Chem., 2012, 10, 114; (e) L. Dong, C. Geng and P. Jiao, J. Org. Chem., 2015, 80, 10992; (f) S. A. Ali and M. Z. N. Iman, Tetrahedron, 2007, 63, 9134.
[8] E. Winterfeldt, W. Krohn, H. Stracke, Chem. Ber. 1969, 102, 2346
[9] (a) E. H. Huntress, T. E. Leslie, W. M. Hearon, J. Am. Chem. Soc. 1956, 78, 419. (b) W. C. Agosta, J. Org. Chem. 1961, 26, 1724.
[10] For intramolecular related reactions, see: A. Padwa, G. S. K. Wong, J. Org. Chem. 1986, 51, 3125.
[11] A. J. McCarroll, J. C. Walto, J. Chem. Soc., Perkin Trans. 2001, 1, 3215–3229
[12] R. L. Danheiser, S. K. Gee, H. Sard, J. Am. Chem. Soc., 1982, 104, 7670.
[13] (a) A. Penoni, J. Volkmann, K. M. Nicholas, Org. Lett., 2002, 4, 699–701. (b) A. G. Leach and K. N. Houk, Org. Biomol. Chem., 2003, 1, 1389; (c) A. G. Leach and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 14820. (d) A. Penon, G. Palmisano, Y.-L. Zhao, K. N. Houk, J. Volkman and K. M. Nicholas, J. Am. Chem. Soc., 2009, 131, 653–661.
[14] (a) R. R. Jones, R. G. Bergman, J. Am. Chem. Soc., 1972, 94, 660; (b) R. Nagata, H. Yamanaka, E. Okazaki and I. Saito, Tetrahedron Lett., 1989, 30, 4995; (c) A. G. Myers, E. Y. Kuo and N. S. Finney, J. Am. Chem. Soc., 1989, 111, 8057; (d) A. G. Myers and P. S. Dragovich, J. Am. Chem. Soc., 1989, 111, 9130; (e) R. G. Bergman, Acc. Chem. Res., 1973, 6, 25; (f) A. Basak, S. Mandal and S. S. Bag, Chem. Rev., 2003, 103, 4077; (g) C. Raviola, S. Protti, D. Ravelli and M. Fagnoni, Chem. Soc. Rev., 2016, 45, 4364; (h) C. Wentrup, Acc. Chem. Res., 2011, 44, 393.
[15] For the reviews of radical annulations, see: (a) A. Studer and D. P. Curran, Angew. Chem., Int. Ed., 2016, 55, 58; (b) H. Togo, Advanced free radical reactions for organic synthesis, Elsevier, Boston, Amsterdam, 1st edn, 2004; (c) T. R. Rheault and M. P. Sibi, Synthesis, 2003, 803; (d) A. J. McCarroll and J. C. Walton, J. Chem. Soc., Perkin Trans. 1, 2001, 3215; (e) P. Dowd and W. Zhang, Chem. Rev., 1993, 93, 2091.
[16] For carbon-based 1, n-diradicals, see selected reviews: (a) H.-Y. Lee, Acc. Chem. Res., 2015, 48, 2308; (b) M. Abe, Chem. Rev., 2013, 113, 7011; (c) P. W. Peterson, R. K. Mohamed and I. V. Alabugin, Eur. J. Org. Chem., 2013, 2505; (d) M. Abe, J. Ye and M. Mishima, Chem. Soc. Rev., 2012, 41, 3808.
[17] For diradicals from diazo reagents, see: (a) W. Adam, S. Grabowski and H. Platsch, J. Am. Chem. Soc., 1989, 111, 751; (b) W. Adam, K. Hannemann and R. M. Wilson, J. Am. Chem. Soc., 1986, 108, 929; (c) W. Adam, K. Hannemann and R. M. Wilson, J. Am. Chem. Soc., 1984, 106, 7646; (d) W. R. Roth, M. Biermann, G. Erker, K. Jelich, W. Gerhartz and H. Görner, Chem. Ber., 1980, 113, 586.
[18] (a) J. Drujon, R. Rahmani, V. Heran, R. Blanc, Y. Carissan, B. Tuccio, L. Commeiras and J. Parrain, Phys. Chem. Chem. Phys., 2014, 16, 7513; (b) R. Roth, T. Ebbrecht and A. Beitat, Chem. Ber., 1988, 121, 1357; (c) W. R. Roth, R. Longer, M. Bartmann, B. Stevermann, G. Maier, H. P. Reisenauer, R. Sustmann and W. Müller, Angew. Chem., Int. Ed. Engl., 1987, 26, 256; (d) W. R. Roth, B. P. Scholz, R. Breuckmann, K. Jelich and H. W. Lennartz, Chem. Ber., 1982, 115, 1934; (e) W. R. Roth and B. P. Scholz, Chem. Ber., 1982, 115, 1197.
[19] (a) Y. Yamamoto and H. Yamamoto, Angew. Chem., Int. Ed., 2005, 44, 7082; (b) B. S. Bodnar and M. J. Miller, Angew. Chem., Int. Ed., 2011, 50, 5630; (c) L. Brulíková, A. Harrison, M. J. Miller and J. Hlaváč, Beilstein J. Org. Chem., 2016, 12, 1949; (d) P. F. Vogt and M. J. Miller, Tetrahedron, 1998, 54, 1317; (e) J. Streith and A. Defoin, Synthesis, 1994, 107; (f) Y. Yamamoto and H. Yamamoto, Eur. J. Org. Chem., 2006, 2031–2043; (g) H. Yamamoto and N. Momiyama, Chem. Commun., 2005, 3514–3525.
[20] (a) P. Sharma and R.-S. Liu, Org. Lett., 2016, 18, 412; (b) P. Sharma and R.-S. Liu, Chem. – Eur. J., 2016, 22, 15881; (c) I. Chatterjee, R. Fröhlich and A. Studer, Angew. Chem., Int. Ed., 2011, 50, 11257; (d) A. Mukherjee, R. B. Dateer, R. Chaudhuri, S. Bhunia, S. N. Karad and R.-S. Liu, J. Am. Chem. Soc., 2011, 133, 15372.
[21] Part of this work is recently published; see: J. Liu, M. Skaria, P. Sharma, Y.-W. Chiang and R.-S. Liu, Chem. Sci., 2017, 8, 5482–5487.
[22] (a) A. Rescifina, M. A. Chiacchio, A. Corsaro, E. D. Clercq, D. Iannazzo, A. Mastino, A. Piperno, G. Romeo, R. Romeo and V. Valveri, J. Med. Chem., 2006, 49, 709; (b) A. Pinto, P. Conti, L. Tamborini and C. D. Micheli, Tetrahedron: Asymmetry, 2009, 20, 508; (c) W. Hartwig and L. Born, J. Org. Chem., 1987, 52, 4352; (d) Y. Nishimura, E. Shitara, H. Adachi, M. Toyoshima, M. Nakajima, Y. Okami and T. Takeuchi, J. Org. Chem., 2000, 65, 2; (e) Y. Hayashi and S. Ogasawara, Org. Lett., 2016, 18, 3426; (f) G. Righi, S. Ciambrone, C. Bonini and P. Campaner, Bioorg. Med. Chem., 2008, 16, 902.
[23] R. Chaudhuri, H.-Y. Liao and R.-S. Liu, Chem. Eur. J., 2009, 15, 8895.
[24] For reviews for nitrone/alkene cycloadditions, see: (a) K. V. Gothelf and K. A. Jørgensen, Chem. Rev., 1998, 98, 863; (b) H. Pellissier, Tetrahedron, 2007, 63, 3235; (c) L. M. Stanley and M. P. Sibi, Chem. Rev., 2008, 108, 2887; (d) M. Kissanea and A. R. Maguire, Chem. Soc. Rev., 2010, 39, 845; (e) T. Hashimoto and K. Maruoka, Chem. Rev., 2015, 115, 5366; (f) R. Huisgen, Angew. Chem., Int. Ed. Engl., 1963, 2, 565; (g) P. N. Confalone and E. M. Huie, Org. React., 1988, 36, 1; (h) D. B. Huple, B. D. Mokar and R.-S. Liu, Angew. Chem., Int. Ed., 2015, 54, 14924.
[25] (a) R. K. Kawade and R.-S. Liu, Angew. Chem., Int. Ed., 2017, 56, 2035; (b) S. Chakrabarty, I. Chatterjee, B. Wibbeling, C. G. Daniliuc and A. Studer, Angew. Chem., Int. Ed., 2014, 53, 5964.
[26] Crystallographic data of compounds 1-1a’’ and 1-5a were deposited at the Cambridge Crystallo-graphic Data Center; 1-1a’’, CCDC 1540298; and 1-5a, CCDC 1541215.
[27] (a) A. G. Leach and K. N. Houk, Org. Biomol. Chem., 2003, 1, 1389; (b) A. G. Leach and K. N. Houk, J. Am. Chem. Soc., 2002, 124, 14820. (c) A. Penon, G. Palmisano, Y.-L. Zhao, K. N. Houk, J. Volkman and K. M. Nicholas, J. Am. Chem. Soc., 2009, 131, 653–661.
[28] For the cycloaddition of ketonitrones with alkenes, see selected examples: (a) T. B. Nguyen, A. Matel, R. Dhal and G. Dujardin, Org. Lett., 2008, 10, 4493; (b) T. Q. Tran, V. V. Diev, G. L. Starova, V. V. Gurzhiy and A. P. Molchanov, Eur. J. Org. Chem., 2012, 2054; (c) M. Burdisso, R. Gandolfi, P. Gandilfi and P. Grünanger, Tetrahedron, 1989, 45, 5579.
[29] (a) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot and J. Martinez, Chem. Rev., 2016, 116, 15235; (b) A. Badoiu, Org. Biomol. Chem., 2012, 10, 114; (c) L. Dong, C. Geng and P. Jiao, J. Org. Chem., 2015, 80, 10992; (d) S. A. Ali and M. Z. N. Iman, Tetrahedron, 2007, 63, 9134.
[30] D. Zhao, M. Johansson, J. -E. Bäckvall, Eur. J. Org. Chem., 2007, 4431–4436.
1.2. Chapter 2:
[1] General reviews on preparation of nitrogen-heterocycles: (a) “Amino-Based Building Blocks for the Construction of Biomolecules”: A. Mann in Amino Group Chemistry: From Synthesis to the Life Sciences (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007, pp. 207-256-592; (b) M. Balasubramanian, J. G. Keay in Comprehensive Heterocyclic Chemistry (Eds.: A. R. Katritzky, C. W. Rees), Pergamon, Oxford, 1984, pp. 245-300; (c) Z. Jin, Nat. Prod. Rep. 2011, 28, 1143-1191; (d) Amines: Synthesis Properties and Applications (Ed.: S. A. Lawrence), Cambridge University Press, Cambridge, 2004; (e) Modern Amination Methods (Ed.: A. Ricci), Wiley-VCH, Weinheim, 2007.
[2] π-Acid catalysis reviews: (a) A. Furstner, P. W. Davies, Angew. Chem. Int. Ed. 2007, 46, 3410-3449; (b) A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211; (c) D. J. Gorin, F. D. Toste, Nature 2007, 446, 395–403.
[3] General and recent reviews of gold catalysis and its applications (a) C. Obradors, A. M. Echavarren, Acc. Chem. Res. 2014, 47, 902-912; (b) L. Fensterbank, M. Malacria, Acc. Chem. Res. 2014, 47, 953-965; (c) D. Garayalde, C. Nevado, ACS Catal. 2012, 2, 1462-1479; (d) M. Rudolph, A. S. K. Hashmi, Chem. Soc. Rev. 2012, 41, 2448-2462; (e) F. Lopez, J. L. Mascarenas, Beilstein J. Org. Chem. 2011, 7, 1075-1094; (f) A. Furstner, Chem. Soc. Rev. 2009, 38, 3208-3221; (g) E. Jimenez-Nunez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326-3350.
[4] (a) G. Dequirez, V. Pons, P. Dauban, Angew. Chem. Int. Ed. 2012, 51, 7384-7395; (b) F. Collet, C. Lescot, P. Dauban, Chem. Soc. Rev. 2011, 40, 1926-1936; (c) “Synthetic Carbene and Nitrene Chemistry”: M. P. Doyle in Reactive Intermediate Chemistry (Eds.: R. A. Moss, M. S. Platz, M. Jones, Jr.), Wiley Interscience, New York, 2004, pp. 561-592.
[5] M. P. Doyle, W. Hu, D. J. Timmons, Org. Lett. 2001, 3, 3741.
[6] X. Wang, X. Xu, P. Zavalij, M. P. Doyle, J. Am. Chem. Soc. 2011, 133, 16402.
[7] V. V. Pagar, A. M. Jadhav, R.-S. Liu, J. Am. Chem. Soc. 2011, 133, 20728−20731.
[8] R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed. 2016, 55, 1–6.
[9] (a) H. M. L. Davies, E. G. Antoulinakis, ed. L. E. Overman, Intermolecular Metal-Catalyzed Carbenoid Cyclopropanations in Organic Reactions, John Wiley & Sons, Inc., New York, NY, 2001, vol. 57, pp 1-326; (b) H. M. L. Davies and R. E. J. Beckwith, Chem. Rev., 2003, 103, 2861; (c) M. P. Doyle, R. Duffy, M. Ratnikov and L. Zhou, Chem. Rev., 2010, 110, 704; (d) Q.-Q. Cheng, Y. Yu, J. Yedoyan and M. P. Doyle, ChemCatChem, 2018, 10, 488.
[10] For selected reviews for gold carbenes, see: (a) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677; (b) L. Liu and J. Zhang, Chem. Soc. Rev., 2016, 45, 506; (c) E. López, S. Gonzalez-Pelayo and L. A. López, Chem. Rec., 2017, 17, 312; (d) C. Obradors and A. M. Echavarren, Chem. Commun., 2014, 50, 16; (e) L. Zhang, Acc. Chem. Res., 2014, 47, 877; (f) D. P. Day and P. W. H. Chan, Adv. Synth. Catal., 2016, 358, 1368.
[11] The reactions were only reported for Ar-Pd(II) species; see: (a) C. Peng, Y. Wang and J. Wang, J. Am. Chem. Soc., 2008, 130, 1566; (b) Z. Zhang, Y. Liu, M. Gong, X. Zhao, Y. Zhang and J. Wang, Angew. Chem. Int. Ed., 2010, 49, 1139.
[12] (a) L. Li, T.-D. Tan, Y.-D. Tan, Y.-Q. Zhang, X. Liu and L.-W. Ye, Org. Biomol. Chem., 2017, 15, 8483; (b) D. B. Huple, S. Ghorpade and R.-S. Liu, Adv. Syn. Catal., 2016, 358, 1348; (c) S. S. Giri and R.-S. Liu, Chem. Sci., 2018, 9, 2991.
[13] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu and L.-W. Ye, Chem. Sci., 2015, 6, 1265; (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li and L.-W. Ye, Chem. Asian J., 2015, 10, 1854; (c) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794; (d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688.
[14] (a) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger and A. S. K. Hashmi, Org. Lett., 2017, 19, 1020; (b) M. Chen, N. Sun, H. Chen and Y. Liu, Chem. Soc., 2016, 52, 6324; (c) W. Xu, G. Wang, N. Sun and Y. Liu, Org. Lett., 2017, 19, 3307.
[15] The reactions of isoxazoles with rhodium carbenes were noted by Davies’ group; distinct [3+3]-annulations were reported for α-alkenylrhodium esters as shown below. (a) J. R. Manning and H. M. L. Davies, Tetrahedron, 2008, 64, 6901; (b) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602.
[16] (a) A. Archambeau, F. Miege, J. Crossy and C. Meyer, In Patai’s Chemistry of Functional Groups; Z. Rappoport, J. F. Liebman and I. Marek, Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, 2014; pp 631−700; (b) Y. Deng and M. P. Doyle, Isr. J. Chem. 2016, 56, 399-408; (c) F. Miege, C. Meyer and J. Cossy, Org. Lett., 2010, 12, 4144; (d) F. Miege, C. Meyer and J. Cossy, Chem. Eur. J., 2012, 18, 7810; (e) C. Li, Y. Zeng and J. Wang, Tetrahedron Lett., 2009, 50, 2956; (f) Z.-B. Zhu and M. Shi, Chem. Eur. J., 2008, 14, 10219; (g) S. B. Wagh, Y.-C. Hsu and R.-S. Liu, ACS Catal., 2016, 6, 7160; (h) Z. Liu, Q. Li, P. Liao and X. Bi, Chem. Eur. J., 2017, 23, 4756; (i) W. Rao, M. J. Koh, D. Li, H. Hirao and P. W. H. Chan, J. Am. Chem. Soc., 2013, 135, 7926; (j) W. Rao and P. W. H. Chan, Chem. Eur. J., 2014, 20, 713; (k) J. Yan, G. L. Tay, C. Neo, B. R. Lee and P. W. H. Chan, Org. Lett., 2015, 17, 4176.
[17] (a) S. Chakrabarty, M. S. Croft, M. G. Marko and G. Moyna, Bioorg. Med. Chem., 2013, 21, 1143; (b) MERCK SHARP and DOHME CORP., WO 2012/174176 A1, 2012; (c) P. S. Ramamoorthy and R. E. McDevitt, US 2004/0019040, 2004; (d) J. Wöfling, É. Frank, G. Schneider, M. T. Bes and L. F. Tietze, Synlett, 1998, 1205; (e) L. F. Tietze and A. Modi, Med. Res. Rev., 2000, 20, 304; (f) R. M. Kariba, P. J. Houghton and A. Yenesew, J. Nat. Prod., 2002, 65, 566; (g) J. L. Hubbs and C. H. Heathcock, Org. Lett., 1999, 1, 1315.
[18] (a) S. Bhunia and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16488; (b) J. H. Lee and F. D. Toste, Angew. Chem. Int. Ed., 2007, 46, 912; (c) H. Funami, H. Kasama and N. Iwasawa, Angew. Chem. Int. Ed., 2007, 46, 909; (d) G. Lemiere, V. Gandon, K. Cariou, T. Fukuyama, A. L. Dhimane, L. Fensterbank and M. Malacria, Org. Lett., 2007, 9, 2207; (e) V. Gandon, G. Lemiere, A. Hours, L. Fensterbank and M. Malacria, Angew. Chem. Int. Ed., 2008, 47, 7534; (f) M. R. Fructos, M. Besora, A. A. C Braga, M. M. Díaz-Requejo, F. Maseras and P. J. Pérez, Organometallics, 2017, 36, 172; (f) F.-Q. Shi, X. Li, Y. Xia, L. Zhang and Z.-X. Yu, J. Am. Chem. Soc., 2007, 129, 15503; (g) W. Rao, D. Susanti, B. J. Ayers and P. W. H. Chan, J. Am. Chem. Soc., 2015, 137, 6350; (h) W. Rao, J. W. Boyle and P. W. H. Chan, Chem. Eur. J., 2016, 22, 6532.
[19] Crystallographic data of compounds 2-4aO3 and 2-5a were deposited at Cambridge Crystallographic Data Center: 2-4aO3 (CCDC 1819137); 2-5a (CCDC 1819138).
[20] L. Zhang and S. Wang, J. Am. Chem. Soc., 2006, 128, 1442.
[21] For gold-catalyzed nitrene reactions of alkynes; see selected examples: (a) D. J. Gorin, N. R. Davies and F. D. Toste, J. Am. Chem. Soc., 2005, 127, 11260; (b) A. Wetzel and F. Gagosz, Angew. Chem. Int. Ed., 2011, 50, 7354; (c) B. Lu, Y. Luo, L. Liu, L. Ye, Y. Wang and L. Zhang, Angew. Chem. Int. Ed., 2011, 50, 8358; (d) C. Shu, Y.-H. Wang, B. Zhou, X.-L. Li, Y.-L. Li, Y.-F. Ping, X. Lu and L.-W. Ye, J. Am. Chem. Soc., 2015, 137, 9567; (e) H.-H. Hung, Y.-C. Liao and R.-S. Liu, J. Org. Chem., 2013, 78, 7970.
[22] Benzisoxazoles serve as nitrene sources in rhodium-catalyzed C-H functionalizations, see selected examples: (a) S. Yu, G. Tang, Y. Li, X. Zhou, Y. Lan and X. Li, Angew. Chem. Int. Ed., 2016, 55, 8696; (b) M. Zou, J. Liu, C. Tang and N. Jiao, Org. Lett., 2016, 18, 3030; (c) S. Yu, Y. Li, X. Zhou, H. Wang, L. Kong and X. Li, Org. Lett., 2016, 18, 2812.
[23] The reactions of enamines and aldehydes are generally implemented with Lewis acids or a base, see: (a) R. Matsubara, N. Kawai and S. Kobayashi, Angew. Chem. Int. Ed., 2006, 45, 3814; (b) T. Kochi, T. P. Tang and J. A. Ellman, J. Am. Chem. Soc., 2003, 125, 11276; (c) R. Matsubara, P. Vital, Y. Nakamura, H. Kiyohara and S. Kobayashi, Tetrahedron, 2004, 60, 9769.
[24] R. L. Sahani and R.-S. Liu, Angew. Chem. Int. Ed., 2017, 56, 12736.
[25] S. Bhunia and R.-S. Liu, J. Am. Chem. Soc., 2008, 130, 16488.
[26] T. M. Macdonald and D. R. Reagan, J. Org. Chem., 1980, 45, 4740.
[27] R. Chaudhari, H.-Y. Liao and R.-S. Liu, Chem. Eur. J., 2009, 15, 8895.
[28] (a) J. Chauhan and S. Fletcher, Tetrahedron Lett., 2012, 53, 4951; (b) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794; (c) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger and A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688.
1.3. Chapter 3:
[1] See selected review for gold-catalyzed N-oxide reactions: (a) L. Zhang, Acc. Chem. Res. 2014, 47, 877-888; (b) H.-S. Yeom, S. Shin, Acc. Chem. Res. 2014, 47, 966-977; (c) Z. Zheng, Z. Wang, Y. Wang, L. Zhang, Chem. Soc. Rev., 2016, 45, 4448-4485; (d) R. J. Harris, R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533-4551;
[2] (a) R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806-3809.
[3] (a) Z. Zeng, H. Jin, K. Sekine, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem., Int. Ed. 2018, 57, 6935-6939.
[4] A. Prechter, G. Henrion, P. Faudot dit Bel, F. Gagosz, Angew. Chem. Int. Ed. 2014, 53, 4959-4963.
[5] (a) P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew. Chem. Int. Ed. 2011, 50, 8931-8935. (b) R. J. Reddy, M. P. Ball-Jones, P. W. Davies, Angew. Chem. Int. Ed. 2017, 56, 13310-13313.
[6] J. González, J. Santamaría, A. L. Suárez-Sobrino, A. Ballesteros, Adv. Synth. Catal. 2016, 358, 1398-1403.
[7] (a) M. Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324-6327. (b) W. Xu, G. Wang, N. Sun, Y. Liu, Org. Lett. 2017, 19, 3307-3310. (c) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F. Rominger, A. S. K. Hashmi, Org. Lett., 2017, 19, 1020–1023.
[8] Y. Zhao, C. Wang, Y. Hu, B. Wan, Chem. Commun., 2018, 54, 3963-3966.
[9] X.-Q. Zhu, Q. Sun, Z.-X. Zhang, B. Zhou, P.-X. Xie, W.-B. Shen, X. Lu, J.-M. Zhou, L.-W. Ye, Chem. Commun., 2018, 54, 7435-7438.
[10] X.-Q. Zhu, H. Yuan, Q. Sun, B. Zhou, X.-Q. Han, Z.-X. Zhang, X. Lu, L.-W. Ye, Green Chem., 2018, 20, 4287-4291.
[11] (a) C. Ki, R. B. Dateer, S. Chang, Org. Lett. 2017, 19, 190-193. (b) N. Iranpoor, H. Firouzabadi, N. Nowrouzi, Tetrahedron Letters, 2006, 47, 8247-8250. (c) X, Lei, M. Gao, Y. Tang, Org. Lett. 2016, 18, 4990-4993. (d) R. K. Smalley, Science of Synthesis, 2002, 11, 289-335.
[12] N. Zaware, M. Ohlmeyer, Heterocycle. Commun. 2014, 20, 251-256.
[13] T. P. Heffron, R. A. Heald, C. Ndubaku, B. Wei, M. Augistin, S. Do, K. Edgar, C. Eigenbrot, L. Friedman, E. Gancia, P. S. Jackson, G. Jones, A. Kolesnikov, L.B. Lee, J. D. Lesnick, C. Lewis, N. McLean, M. Mörtl, J. Nonomiya, J. Pang, S. Price, W. W. Prior, L. Salphati, S. Steve Sideris, S. T. Staben, S. Steinbacher, V. Tsui, J. Wallin D. Sampath, A. G. Olivero, J. Med. Chem. 2016, 59, 985-1002.
[14] R. Bruce Lydiard, A. J. Gelenberg, Pharmacotherapy. 1981, 1, 163-178.
[15] Y. Liao, B. J. Venhuis, N. Rodenhuis, W. Timmerman, H. Wikstrom, J. Med. Chem., 1999, 42, 2235-2244.
[16] K. Nagarajan, J. David, Y. S. Kulkarni, S. B. Hendi, S. J. Shenoy, P. Upadhyaya, Eur. J. Med. Chem., 1986, 21, 21-26.
[17] H. Singh, A. S. Chawla, V. K. Kapoor, Prog. Med. Chem., 1985, 22, 243-266.
[18] P. P. M. A. Dols, B. J. B. Folmer, H. Hamersma, C. W. Kuil, H. Lucas, L. Ollero, J. B. M. Rewinkel, P. H. Hermkens, Bioorg. Med. Chem. Lett., 2008, 18, 1461-1467.
[19] N. B. Chernysheva, A. V. Samet, V. N. Marshalkin, V. A. Polukeev, V. V. Semenov, Mendeleev Communications, 2001, 11,109-110.
[20] A. Hadou, A. Hamid, H. Mathouet, M.-F. Deïda, A. Daïch, Heterocyces, 2008, 76, 1017-1022.
[21] T. Noguchi, Y. Nishii, M. Miyura, Chem. Lett. 2017, 46, 1512-1514.
[22] Y.-P. Han, X.-S Li, Z. Sun, X.-Y. Zhu, M. Li, X.-R. Song, Y.-M. Liang, Adv. Synth. Catal. 2017, 359, 2735-2740.
[23] A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211.
[24] N. T. Patil, Y. Yamamoto, Chem. Rev. 2008, 108, 3395-3442.
[25] S. M. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281.
[26] M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082.
[27] D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Syn. Catal. 2016, 358, 1348-1367.
[28] A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci., 2015, 6, 1265-1271.
[29] X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J., 2015, 10, 1854-1858.
[30] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030.
[31] W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609.
[32] S. S. Giri, R.-S. Liu, Chem. Sci., 2018, 9, 2991-2995.
[33] B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488-4492.
[34] H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797.
[35] H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692.
[36] R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736-12740.
[37] X.-N. Wang, H.-S. Yeom, L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem. Res., 2014, 47, 560–578.
[38] K. A. DeKorver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang, R. P. Hsung, Chem. Rev., 2010, 110, 5064–5106.
[39] G. Evano, A. Coste, K. Jouvin, Angew. Chem., Int. Ed., 2010, 49, 2840–2859.
[40] Crystallographic data of compounds 3-3p, 3-4b, 3-4q, 3-4s and 3-4t were deposited at Cambridge Crystallographic Data Center: 3-3p (CCDC 1856341), 3-4b (CCDC 1856351), 3-4q (CCDC 1856346), 3-4s (CCDC 1856344), and 3-4t (CCDC 1856352).
[41] M. Chen, Y. Chen, N. Sun, J. Zhao, Y. Liu, Y. Li, Angew. Chem. Int. Ed. 2015, 54, 1200-1204.
[42] A. S. Dudnik, V. Gevorgyan, Angew. Chem. Int. Ed. 2007, 46, 5195-5197.
[43] E. Benedetti, G. Lemière, L.-L. Chapellet, A. Penoni, G. Palmisano, M. Malacria, J.-P. Goddard, L. Fensterbank, Org. Lett., 2010, 12, 4396-4399.
[44] Y. Qiu, C. Fu, X. Zhang, S. Ma, Chem. Eur. J. 2014, 20, 10314-10322.
[45] H. V. Adcock, T. Langer, P. W. Davies, Chem. Eur. J. 2014, 20, 7262-7266.
[46] A. H. Christian, Z. L. Niemeyer, M. S. Sigman, F. D. Toste, ACS Catal. 2017, 7, 3973-3978.
[47] I. Alonso, H. Faustino, F. López, J. L. Mascareñas, Angew. Chem. Int. Ed. 2011, 50, 11496-11500.
[48] P. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348-6349.
[49] N. De, C. E. Song, D. H. Ryu, E. J. Yoo, Chem. Commun., 2018, 54, 6911-6914.
[50] N. Iqbal, A. Fiksdahl, J. Org. Chem., 2013, 78, 7885-7895.
[51] L. Cui, L.-W. Ye, L. Zhang, Chem. Commun., 2010, 46, 3351-3353.
[52] C.-W. Li, K. Pati, G.-Y. Lin, S. M. Abu Sohel, H.-H. Hung, R.-S. Liu, Angew. Chem. Int. Ed. 2010, 49, 9891-9894.
1.4. Chapter 4:
[1] For recent selected examples, see: (a) Y. Li, M. Gao, B. Liu and B. Xu, Org. Chem. Front., 2017, 4, 445; (b) P. Gao, H.-X. Li, X.-H. Hao, D.-P. Jin, D.-Q. Chen, X.-B. Yan, X.-X. Wu, X.-R. Song, X.-Y. Liu and Y.-M. Liang, Org. Lett., 2014, 16, 6298; (c) A. G. Griesbeck, M. Franke, J. Neudörfl and H. Kotaka, Beilstein J. Org. Chem., 2011, 7, 127; (d) O. Debleds, E. Gayon, E. Ostaszuk, E. Vrancken and J.-M. Campagne, Chem. – Eur. J., 2010, 16, 12207; (e) S. Tang, J. He, Y. Sun, L. He and X. She, Org. Lett., 2009, 11, 3982; (f) T. V. Hansen, P. Wu and V. V. Fokin, J. Org. Chem., 2005, 70, 7761; (g) T. M. V. Pinho e Melo, Curr. Org. Chem., 2005, 9, 925.
[2] For recent selected examples, see: (a) N. V. Rostovskii, J. O. Ruvinskaya, M. S. Novikov, A. F. Khlebnikov, I. A. Smetanin and A. V. Agafonova, J. Org. Chem., 2017, 82, 256; (b) E. E. Galenko, A. V. Galenko, A. F. Khlebnikov and M. S. Novikov, RSC Adv., 2015, 5, 18172; (c) S. Pusch and T. Opatz, Org. Lett., 2014, 16, 5430; (d) K. C. Coffman, T. A. Pallazo, T. P. Hartley, J. C. Fettinger, D. J. Tantillo and M. J. Kurth, Org. Lett., 2013, 15, 2062; (e) J. R. Manning and H. M. L. Davies, J. Am. Chem. Soc., 2008, 130, 8602.
[3] D. J. Gorin, F. D. Toste, Nature, 2007, 446, 395.
[4] For recent reviews, see: (a) R. J. Harris and R. A. Widenhoefer, Chem. Soc. Rev., 2016, 45, 4533; (b) Y. Wang, M. E. Muratore and A. M. Echavarren, Chem. Eur. J., 2015, 21, 7332; (c) R. Dorel and A. M. Echavarren, J. Org. Chem., 2015, 80, 7321; (d) D. Qian and J. Zhang, Chem. Soc. Rev., 2015, 44, 677; (e) H.-S. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966. For a highlight, see: (f) A. S. K. Hashmi, Angew. Chem. Int. Ed., 2008, 47, 6754.
[5] (a) D. Benitez, N. D. Shapiro, E. Tkatchouk, Y. Wang, W. A. Goddard III and F. D. Toste, Nature Chem., 2009, 1, 482; For a comment, see also: (b) A. M. Echavarren, Nature Chem., 2009, 1, 431.
[6] A. S. K. Raj, B. S. Kale, B. D. Mokar and R. S. Liu, Org. Lett., 2017, 19, 5340–5343.
[7] Zhao, Y.; Hu, Y.; Wang, C.; Li, X.; Wan, B. J. Org. Chem. 2017, 82, 3935.
[8] M.-H. Tsai, C.-Y. Wang, A. S. K. Raj, R.-S. Liu, Chem. Commun. 2018, 54, 10866-10869.
[9] M. D. Patil, R.-S. Liu, Org. Biomol. Chem., 2019, DOI: 10.1039/C9OB00468H.
[10] M. Skaria, P. Sharma, R.-S. Liu, Org. Lett., 2019, 21, 2876-2879.
[11] R. D. Kardile, B. S. Kale, P. Sharma, R.-S. Liu, Org. Lett. 2018, 20, 3806−3809.
[12] R. R. Singh, M. Skaria, L. Y. Chen, M. J. Cheng, R.-S. Liu, Chem. Sci. 2019, 10, 1201−1206.
[13] Y.‐C. Hsu, S.‐A. Hsieh, R.-S. Liu, Chem. Eur. J. 2019, 25, 5288-5297.
[14] H.-C. Hsieh, K.-C. Tan,, A. S. K. Raj, R.-S. Liu, Chem. Commun., 2019, 55, 1979- 1982.
[15] Review obc and ocf (a) L. Li, T.-D. Tan, Y.-Q. Zhang, X. Liu, L.-W. Ye, Org. Biomol. Chem., 2017, 15, 8483, (b) E. Aguilar, J. Santamaría, Org. Chem. Front., 2019, DOI: 10.1039/x0xx00000x
[16] E. Ascic, R. G. Ohm, R. Petersen, M. R. Hansen, C. L. Hansen, D. Madsen, D. Tanner, T. E. Nielsen Chem. Eur. J. 2014, 20, 3297–3300. (b) C. A. Demerson, L. G. Humber, N. A. Abraham, G. Schilling, R. R. Martel, C. P. Asciak, J. Med. Chem. 1983, 26, 1778-1780. (c) A. H. Katz,' C. A. Demerson, C. C. Shaw, A. A. Asselin, L. G. Humber, K. M. Conway, G. Gavin, C. Guinosso, N. P. Jensen, D. Mobilio, R. Noureldin, J. Schmid, U. Shah, D. V. Engen, T. T. Chau, B. M. Weichman, J. Med. Chem. 1988, 31, 1244-1250. (d) A. Gopalsamy, K. Lim, G. Ciszewski, K. Park, J. W. Ellingboe, J. Bloom, S. Insaf, J. Upeslacis, T. S. Mansour, G. Krishnamurthy, M. Damarla, Y. Pyatski, D. Ho, A. Y. M. Howe, M. Orlowski, B. Feld, J. O’Connell, J. Med. Chem. 2004, 47, 6603-6608. (e) H. Lan, C. C. Cheng, T. J. Kowalski, L. Pang, L. Shan, C.-C Chuang, J. Jackson, A. R.-Triana, L. Bober, L. Liu, J. Voigt, P. Orth, X. Yang, G. W. S. Jr., J. A. Hedrick, Journal of Lipid Research, 2011, 52, 646-656.
[17] For reviews on metal-catalyzed cascade reactions for the synthesis of polycyclic indole skeletons, see: J. Barluenga, F. Rodrı ´guez and F. J. Fan ˜ana ´s, Chem. – Asian J., 2009, 4, 1036; M. Platon, R. Amardeil, L. Djakovitchb and J.-C. Hierso, Chem. Soc. Rev., 2012, 41, 3929; L.-Q. Lu, J.-R. Chen and W.-J. Xiao, Acc. Chem. Res., 2012, 45, 1278.
[18] For reviews, see: (a) R. Skouta and C.-J. Li, Tetrahedron, 2008, 64, 4917; A. (b) Eichholzerand M. Bandini, Angew. Chem., Int. Ed., 2009, 48, 9608; (c) M. Bandini, Chem. Soc. Rev., 2011, 40, 1358; (d) R. Dorel and A. M. Echavarren, Chem. Rev., 2015, 115 (17), 9028–9072. (e) K. Hirano, Y. Inaba, T. Watanabe, S. Oishi, N. Fujii, H. Ohno, Adv. Synth. Catal., 2010, 352, 368-372. (f) A. Gimeno, A. R.-Gimeno, A. B.Cuenca, Carmen R. Arellano, M. Medio-Simón, G. Asensio, Chem. Commun., 2015, 51, 12384.
[19] For relevant examples with alkenes, see: X. Han and R. A. Widenhoefer, Org. Lett., 2006, 8, 3801; Z. Zhang, X. Wang and R. A. Widenhoefer, Chem. Commun., 2006, 3717; C. Liu and R. A. Widenhoefer, Org. Lett., 2007, 9, 1935; H. Huang and R. Peters, Angew. Chem., Int. Ed., 2009, 48, 604; M.-Z. Wang, M.-K. Wong, C.-M. Che, Chem. Eur. J., 2008, 14, 8353.
[20] H.-J. Kno ¨lker and K. R. Reddy, Chem. Rev., 2002, 102, 4303; J. Roy, A. K. Jana and D. Mal, Tetrahedron, 2012, 68, 6099; A. W. Schmidt, K. R. Reddy and H.-J. Kno ¨lker, Chem. Rev., 2012, 112, 3193; R. R. Gataullin, Russ. J. Org. Chem., 2013, 49, 151.
[21] Jin, H.; Huang, L.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem. Int. Ed., 2016, 55, 794-797.
[22] A. S. K. Hashmi, Chem. Rev. 2007, 107, 3180-3211. b) N. T. Patil, Y. Yamamoto, Chem. Rev., 2008, 108, 3395-3442. (c) S. M. Abu Sohel, R.-S. Liu, Chem. Soc. Rev. 2009, 38, 2269-2281. (d) M. E. Muratore, A. Homs, C. Obradors, A. M. Echavarren, Chem. Asian J. 2014, 9, 3066-3082. (e) D. B. Huple, S. Ghorpade, R.-S. Liu, Adv. Syn. Catal. 2016, 358, 1348-1367.
[23] (a) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X. Lu, L.-W. Ye, Chem. Sci., 2015, 6, 1265-1271. (b) X.-Y. Xiao, A.-H. Zhou, C. Shu, F. Pan, T. Li, L.-W. Ye, Chem. Asian J., 2015, 10, 1854-1858. (c) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 1026-1030. (d) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu, J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605-609.
[24] S. S. Giri, R.-S. Liu, Chem. Sci., 2018, 9, 2991-2995. (b) B. D. Mokar, P. D. Jadhav, Y. B. Pandit, R.-S. Liu, Chem. Sci. 2018, 9, 4488-4492. (c) H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 794-797. (d) H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed., 2016, 55, 12688-12692. (e) R. L. Sahani, R.-S. Liu, Angew. Chem. Int. Ed. 2017, 56, 12736-12740.
[25] Crystallographic data of compounds 4-3a was deposited at Cambridge Crystallographic Data Center: 4-3a (CCDC 1901660).