研究生: |
陳裕傑 Chen, Yu Jie |
---|---|
論文名稱: |
出芽酵母菌蛋白Mre11結合小泛素鍊或小泛素轉譯後修飾蛋白促進Mre11-Rad50-Xrs2蛋白複合體組裝與生理功能 S. cerevisiae Mre11 recruits conjugated SUMO moieties to facilitate the assembly and function of the Mre11-Rad50-Xrs2 complex |
指導教授: |
冷治湘
Leng, Chih Hsiang 張壯榮 Chang, Chuang Rung |
口試委員: |
王群
Wang, Chung 王廷方 Wang, Ting Fang 劉士任 Liu, Shih Jen |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生物科技研究所 Biotechnology |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 123 |
中文關鍵詞: | DNA 修補 、小泛素 、DNA受損反應 |
外文關鍵詞: | DNA repair, SUMO, DNA damage reponse |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染色體雙股斷裂為DNA損傷中最嚴重的一種類型。酵母菌和哺乳類的Mre11-Rad50-Xrs2/Nbs1(MRX/N)-Sae2/Ctp1蛋白質複合體其的生理功能為移除DNA雙股斷裂端點上的二級結構、化學附加物、與DNA共價鍵結的拓撲異構酶或減數分裂專一性蛋白Spo11。MRX/N複合體也負責啟動「磷酸化檢查點」與「廣泛性小泛素蛋白質轉譯後修飾」兩個平行的DNA破損反應,協調DNA修補生化反應與細胞週期。然而,MRX/N複合體促進廣泛性小泛素蛋白質轉譯後修飾的反應機制還不是很清楚。本論文報導出芽酵母菌的Mre11蛋白質有兩個在演化上高度保留的小泛素交互作用結構區域 (SUMO-interacting motifs, SIMs),Mre11SIM1 和 Mre11SIM2,可先後分別非共價性結合小泛素鍊或小泛素轉譯後修飾蛋白 (conjugated SUMO moieties, CSM)。Mre11SIM1在MRX複合體的組裝上扮演著重要角色;Mre11SIM2則能促進組裝完成的MRX複合體非共價性結合催化小泛素轉譯後修飾反應相關酵素,如E2/Ubc9與E3/Siz2,啟動廣泛性小泛素蛋白質轉譯後修飾反應,卻不影響磷酸化檢查點反應。我們也發現在減數分裂時,mre11SIM2突變株的性狀與mre11S、rad50S或sae2Δ等突變株一樣,大量累積由Spo11所催化的DNA雙股斷裂,卻無法進行核苷酸修剪作用,並將Spo11自DNA雙股斷裂點移除。本論文以MRX與DNA損傷修補機制為例,證明小泛素鍊或小泛素轉譯後修飾蛋白可利用非共價性蛋白質交互作用方式影響細胞蛋白質複合體的組裝與生理功能。
Double-strand breaks (DSBs) in chromosomes are the most challenging type of DNA damage. The yeast and mammalian Mre11-Rad50-Xrs2/Nbs1 (MRX/N)-Sae2/Ctp1 complex catalyzes the resection of DSBs induced by secondary structures, chemical adducts or covalently-attached proteins. MRX/N also initiates two parallel DNA damage responses –– checkpoint phosphorylation and global SUMOylation –– to boost a cell’s ability to repair DSBs. However, the molecular mechanism of this SUMO-mediated response is not completely known. In this study, we report that Saccharomyces cerevisiae Mre11 can non-covalently recruit the conjugated SUMO moieties, particularly the poly-SUMO chain. Mre11 has two evolutionarily conserved SUMO-interacting motifs, Mre11SIM1 and Mre11SIM2, which reside on the outermost surface of Mre11. Mre11SIM1 is indispensable for MRX assembly. Mre11SIM2 non-covalently links MRX with the SUMO enzymes (E2/Ubc9 and E3/Siz2) to promote global SUMOylation of DNA repair proteins. Mre11SIM2 acts independently of checkpoint phosphorylation. During meiosis, the mre11SIM2 mutant, as for mre11S, rad50S and sae2Δ, allows initiation but not processing of Spo11-induced DSBs. Using MRX and DSB repair as a model, our work reveals a general principle in which the conjugated SUMO moieties noncovalently facilitate the assembly and functions of multi-subunit protein complexes.
Akamatsu Y, Murayama Y, Yamada T, Nakazaki T, Tsutsui Y, Ohta K, Iwasaki H. 2008. Molecular characterization of the role of the Schizosaccharomyces pombe nip1+/ctp1+ gene in DNA double-strand break repair in association with the Mre11-Rad50-Nbs1 complex. Mol Cell Biol 28(11):3639-51.
Altmannova V, Eckert-Boulet N, Arneric M, Kolesar P, Chaloupkova R, Damborsky J, Sung P, Zhao X, Lisby M, Krejci L. 2010. Rad52 SUMOylation affects the efficiency of the DNA repair. Nucleic Acids Res 38(14):4708-21.
Andres SN, Appel CD, Westmoreland JW, Williams JS, Nguyen Y, Robertson PD, Resnick MA, Williams RS. 2015. Tetrameric Ctp1 coordinates DNA binding and DNA bridging in DNA double-strand-break repair. Nat Struct Mol Biol 22(2):158-66.
Arora C, Kee K, Maleki S, Keeney S. 2004. Antiviral protein Ski8 is a direct partner of Spo11 in meiotic DNA break formation, independent of its cytoplasmic role in RNA metabolism. Mol Cell 13(4):549-59.
Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P. 1997. An atypical topoisomerase II from Archaea with implications for meiotic recombination. Nature 386(6623):414-7.
Bishop DK. 1994. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79(6):1081-92.
Bishop DK, Park D, Xu L, Kleckner N. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69(3):439-56.
Bonetti D, Martina M, Clerici M, Lucchini G, Longhese MP. 2009. Multiple pathways regulate 3' overhang generation at S. cerevisiae telomeres. Mol Cell 35(1):70-81.
Borde V. 2007. The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res 15(5):551-63.
Borde V, Lin W, Novikov E, Petrini JH, Lichten M, Nicolas A. 2004. Association of Mre11p with double-strand break sites during yeast meiosis. Mol Cell 13(3):389-401.
Bylebyl GR, Belichenko I, Johnson ES. 2003. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J Biol Chem 278(45):44113-20.
Cannavo E, Cejka P. 2014. Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514(7520):122-5.
Cao L, Alani E, Kleckner N. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61(6):1089-101.
Carballo JA, Johnson AL, Sedgwick SG, Cha RS. 2008. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132(5):758-70.
Carballo JA, Panizza S, Serrentino ME, Johnson AL, Geymonat M, Borde V, Klein F, Cha RS. 2013. Budding yeast ATM/ATR control meiotic double-strand break (DSB) levels by down-regulating Rec114, an essential component of the DSB-machinery. PLoS Genet 9(6):e1003545.
Chen H, Donnianni RA, Handa N, Deng SK, Oh J, Timashev LA, Kowalczykowski SC, Symington LS. 2015. Sae2 promotes DNA damage resistance by removing the Mre11-Rad50-Xrs2 complex from DNA and attenuating Rad53 signaling. Proc Natl Acad Sci U S A 112(15):E1880-7.
Chen L, Trujillo K, Ramos W, Sung P, Tomkinson AE. 2001. Promotion of Dnl4-catalyzed DNA end-joining by the Rad50/Mre11/Xrs2 and Hdf1/Hdf2 complexes. Mol Cell 8(5):1105-15.
Chen L, Trujillo KM, Van Komen S, Roh DH, Krejci L, Lewis LK, Resnick MA, Sung P, Tomkinson AE. 2005. Effect of amino acid substitutions in the rad50 ATP binding domain on DNA double strand break repair in yeast. J Biol Chem 280(4):2620-7.
Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF. 2006. SUMO modifications control assembly of synaptonemal complex and polycomplex in meiosis of Saccharomyces cerevisiae. Genes Dev 20(15):2067-81.
Cheng YH, Chuang CN, Shen HJ, Lin FM, Wang TF. 2013. Three Distinct Modes of Mec1/ATR and Tel1/ATM Activation Illustrate Differential Checkpoint Targeting during Budding Yeast Early Meiosis. Mol Cell Biol 33(16):3365-76.
Chuang CN, Cheng YH, Wang TF. 2012. Mek1 stabilizes Hop1-Thr318 phosphorylation to promote interhomolog recombination and checkpoint responses during yeast meiosis. Nucleic Acids Res 40(22):11416-27.
Chung I, Zhao X. 2015. DNA break-induced sumoylation is enabled by collaboration between a SUMO ligase and the ssDNA-binding complex RPA. Genes Dev 29(15):1593-8.
Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. 2012. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell 45(3):422-32.
Danielsen JR, Povlsen LK, Villumsen BH, Streicher W, Nilsson J, Wikstrom M, Bekker-Jensen S, Mailand N. 2012. DNA damage-inducible SUMOylation of HERC2 promotes RNF8 binding via a novel SUMO-binding Zinc finger. J Cell Biol 197(2):179-87.
De Muyt A, Zhang L, Piolot T, Kleckner N, Espagne E, Zickler D. 2014. E3 ligase Hei10: a multifaceted structure-based signaling molecule with roles within and beyond meiosis. Genes Dev 28(10):1111-23.
Deng C, Brown JA, You D, Brown JM. 2005. Multiple endonucleases function to repair covalent topoisomerase I complexes in Saccharomyces cerevisiae. Genetics 170(2):591-600.
Diaz RL, Alcid AD, Berger JM, Keeney S. 2002. Identification of residues in yeast Spo11p critical for meiotic DNA double-strand break formation. Mol Cell Biol 22(4):1106-15.
Dou H, Huang C, Singh M, Carpenter PB, Yeh ET. 2010. Regulation of DNA repair through deSUMOylation and SUMOylation of replication protein A complex. Mol Cell 39(3):333-45.
Dou H, Huang C, Van Nguyen T, Lu LS, Yeh ET. 2011. SUMOylation and de-SUMOylation in response to DNA damage. FEBS Lett 585(18):2891-6.
Eichinger CS, Jentsch S. 2010. Synaptonemal complex formation and meiotic checkpoint signaling are linked to the lateral element protein Red1. Proc Natl Acad Sci U S A 107:11370-11375.
Elrod SL, Chen SM, Schwartz K, Shuster EO. 2009. Optimizing sporulation conditions for different Saccharomyces cerevisiae strain backgrounds. Methods Mol Biol 557:21-6.
Falck J, Coates J, Jackson SP. 2005. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605-611.
Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP. 2009. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature 462(7275):935-9.
Ghodke I, Muniyappa K. 2013. Processing of DNA double-stranded breaks and intermediates of recombination and repair by Saccharomyces cerevisiae Mre11 and its stimulation by Rad50, Xrs2, and Sae2 proteins. J Biol Chem 288(16):11273-86.
Gill G. 2004. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 18(17):2046-59.
Grushcow JM, Holzen TM, Park KJ, Weinert T, Lichten M, Bishop DK. 1999. Saccharomyces cerevisiae checkpoint genes MEC1, RAD17 and RAD24 are required for normal meiotic recombination partner choice. Genetics 153(2):607-20.
Haase SB, Reed SI. 2002. Improved flow cytometric analysis of the budding yeast cell cycle. Cell Cycle 1(2):132-6.
Hartsuiker E, Neale MJ, Carr AM. 2009. Distinct requirements for the Rad32 (Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol Cell 33(1):117-23.
Hay RT. 2005. SUMO: a history of modification. Mol Cell 18(1):1-12.
Hay RT. 2013. Decoding the SUMO signal. Biochem Soc Trans 41(2):463-73.
Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. 2002. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135-41.
Hong EJ, Roeder GS. 2002. A role for Ddc1 in signaling meiotic double-strand breaks at the pachytene checkpoint. Genes Dev 16(3):363-76.
Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA. 2001. Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105(4):473-85.
Horie K, Tomida A, Sugimoto Y, Yasugi T, Yoshikawa H, Taketani Y, Tsuruo T. 2002. SUMO-1 conjugation to intact DNA topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene 21(52):7913-22.
Ii T, Mullen JR, Slagle CE, Brill SJ. 2007. Stimulation of in vitro sumoylation by Slx5-Slx8: evidence for a functional interaction with the SUMO pathway. DNA Repair (Amst) 6(11):1679-91.
Jacquiau HR, van Waardenburg RC, Reid RJ, Woo MH, Guo H, Johnson ES, Bjornsti MA. 2005. Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem 280(25):23566-75.
Johnson ES. 2004. Protein modification by SUMO. Annu Rev Biochem 73:355-82.
Kaye JA, Melo JA, Cheung SK, Vaze MB, Haber JE, Toczyski DP. 2004. DNA breaks promote genomic instability by impeding proper chromosome segregation. Curr Biol 14(23):2096-106.
Keeney S. 2001. Mechanism and control of meiotic recombination initiation. Curr Top Dev Biol 52:1-53.
Keeney S, Kleckner N. 1995. Covalent protein-DNA complexes at the 5' strand termini of meiosis-specific double-strand breaks in yeast. Proc Natl Acad Sci U S A 92(24):11274-8.
Klug H, Xaver M, Chaugule VK, Koidl S, Mittler G, Klein F, Pichler A. 2013. Ubc9 Sumoylation Controls SUMO Chain Formation and Meiotic Synapsis in Saccharomyces cerevisiae. Mol Cell.
Knop M, Siegers K, Pereira G, Zachariae W, Winsor B, Nasmyth K, Schiebel E. 1999. Epitope tagging of yeast genes using a PCR-based strategy: more tags and improved practical routines. Yeast 15(10B):963-72.
Krogh BO, Llorente B, Lam A, Symington LS. 2005. Mutations in Mre11 phosphoesterase motif I that impair Saccharomyces cerevisiae Mre11-Rad50-Xrs2 complex stability in addition to nuclease activity. Genetics 171(4):1561-70.
Lai YJ, Lin FM, Chuang MJ, Shen HJ, Wang TF. 2011. Genetic requirements and meiotic function of phosphorylation of the yeast axial element protein Red1. Mol Cell Biol 31(5):912-23.
Lamarche BJ, Orazio NI, Weitzman MD. 2010. The MRN complex in double-strand break repair and telomere maintenance. FEBS Lett 584(17):3682-95.
Lange J, Pan J, Cole F, Thelen MP, Jasin M, Keeney S. 2011. ATM controls meiotic double-strand-break formation. Nature 479(7372):237-40.
Lee CD, Sun HC, Hu SM, Chiu CF, Homhuan A, Liang SM, Leng CH, Wang TF. 2008. An improved SUMO fusion protein system for effective production of native proteins. Protein Sci 17(7):1241-8.
Lee CD, Yan YP, Liang SM, Wang TF. 2009. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. J Biomed Sci 16:69.
Li SJ, Hochstrasser M. 1999. A new protease required for cell-cycle progression in yeast. Nature 398(6724):246-51.
Li SJ, Hochstrasser M. 2000. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol 20(7):2367-77.
Lin FM, Lai YJ, Shen HJ, Cheng YH, Wang TF. 2010. Yeast axial-element protein, Red1, binds SUMO chains to promote meiotic interhomologue recombination and chromosome synapsis. EMBO J 29(3):586-96.
Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. . Cell 118:699-713.
Liu M, Shi S, Zhang S, Xu P, Lai J, Liu Y, Yuan D, Wang Y, Du J, Yang C. 2014. SUMO E3 ligase AtMMS21 is required for normal meiosis and gametophyte development in Arabidopsis. BMC Plant Biol 14:153.
Lloyd J, Chapman JR, Clapperton JA, Haire LF, Hartsuiker E, Li J, Carr AM, Jackson SP, Smerdon SJ. 2009. A supramodular FHA/BRCT-repeat architecture mediates Nbs1 adaptor function in response to DNA damage. Cell 139(1):100-11.
Makharashvili N, Tubbs AT, Yang SH, Wang H, Barton O, Zhou Y, Deshpande RA, Lee JH, Lobrich M, Sleckman BP et al. 2014. Catalytic and noncatalytic roles of the CtIP endonuclease in double-strand break end resection. Mol Cell 54(6):1022-33.
Manfrini N, Guerini I, Citterio A, Lucchini G, Longhese MP. 2010. Processing of meiotic DNA double strand breaks requires cyclin-dependent kinase and multiple nucleases. J Biol Chem 285(15):11628-37.
Mao Y, Sun M, Desai SD, Liu LF. 2000. SUMO-1 conjugation to topoisomerase I: A possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci U S A 97(8):4046-51.
McKee AH, Kleckner N. 1997. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146(3):797-816.
Meulmeester E, Melchior F. 2008. Cell biology: SUMO. Nature 452(7188):709-11.
Mimitou EP, Symington LS. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455(7214):770-4.
Mimitou EP, Symington LS. 2009. DNA end resection: many nucleases make light work. DNA Repair (Amst) 8(9):983-95.
Mimitou EP, Symington LS. 2011. DNA end resection-Unraveling the tail. DNA Repair (Amst) 10(3):344-8
Moreau S, Ferguson JR, Symington LS. 1999. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol Cell Biol 19(1):556-66.
Mossessova E, Lima CD. 2000. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5(5):865-76.
Nairz K, Klein F. 1997. mre11S--a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev 11(17):2272-90.
Nakada D, Matsumoto K, Sugimoto K. 2003. ATM-related Tel1 associates with double-strand breaks through an Xrs2-dependent mechanism. Genes Dev 17(16):1957-62.
Navadgi-Patil VM, Burgers PM. 2009. A tale of two tails: activation of DNA damage checkpoint kinase Mec1/ATR by the 9-1-1 clamp and by Dpb11/TopBP1. DNA Repair (Amst) 8(9):996-1003.
Neale MJ, Keeney S. 2006. Clarifying the mechanics of DNA strand exchange in meiotic recombination. Nature 442(7099):153-8.
Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436(7053):1053-7.
Nichols MD, DeAngelis K, Keck JL, Berger JM. 1999. Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. Embo j 18(21):6177-88.
Paull TT, Gellert M. 1999. Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev 13(10):1276-88.
Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M. 1999. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J 18(22):6561-72.
Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. 2005. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428-33.
Pommier Y, Leo E, Zhang H, Marchand C. 2010. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem Biol 17(5):421-33.
Prinz S, Amon A, Klein F. 1997. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146(3):781-95.
Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ, Tainer JA, McGowan CH, Boddy MN. 2007. SUMO-targeted ubiquitin ligases in genome stability. EMBO J 26(18):4089-101.
Psakhye I, Jentsch S. 2012. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell 151(4):807-20.
Puddu F, Oelschlaegel T, Guerini I, Geisler NJ, Niu H, Herzog M, Salguero I, Ochoa-Montano B, Vire E, Sung P et al. 2015. Synthetic viability genomic screening defines Sae2 function in DNA repair. Embo j 34(11):1509-22.
Qiao H, Prasada Rao HB, Yang Y, Fong JH, Cloutier JM, Deacon DC, Nagel KE, Swartz RK, Strong E, Holloway JK et al. 2014. Antagonistic roles of ubiquitin ligase HEI10 and SUMO ligase RNF212 regulate meiotic recombination. Nat Genet 46(2):194-9.
Redinbo MR, Stewart L, Kuhn P, Champoux JJ, Hol WG. 1998. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 279(5356):1504-13.
Refolio E, Cavero S, Marcon E, Freire R, San-Segundo PA. 2011. The Ddc2/ATRIP checkpoint protein monitors meiotic recombination intermediates. J Cell Sci 124(Pt 14):2488-500.
Rockmill B. 2009. Chromosome spreading and immunofluorescence methods in Saccharomyes cerevisiae. Methods Mol Biol 558:3-13.
Rytinki MM, Kaikkonen S, Pehkonen P, Jaaskelainen T, Palvimo JJ. 2009. PIAS proteins: pleiotropic interactors associated with SUMO. Cell Mol Life Sci 66(18):3029-41.
Sacher M, Pfander B, Hoege C, Jentsch S. 2006. Control of Rad52 recombination activity by double-strand break-induced SUMO modification. Nat Cell Biol 8(11):1284-90.
Sanchez Y, Desany BA, Jones WJ, Liu Q, Wang B, Elledge SJ. 1996. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271(5247):357-60.
Sarangi P, Steinacher R, Altmannova V, Fu Q, Paull TT, Krejci L, Whitby MC, Zhao X. 2015. Sumoylation influences DNA break repair partly by increasing the solubility of a conserved end resection protein. PLoS Genet 11(1):e1004899.
Schiller CB, Lammens K, Guerini I, Coordes B, Feldmann H, Schlauderer F, Mockel C, Schele A, Strasser K, Jackson SP et al. . 2012. Structure of Mre11-Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling. Nat Struct Mol Biol 19(7):693-700.
Shinohara A, Gasior S, Ogawa T, Kleckner N, Bishop DK. 1997. Saccharomyces cerevisiae recA homologues RAD51 and DMC1 have both distinct and overlapping roles in meiotic recombination. Genes Cells 2(10):615-29.
Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y. 2004. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A 101(40):14373-8.
Spirek M, Estreicher A, Csaszar E, Wells J, McFarlane RJ, Watts FZ, Loidl J. 2010. SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe. Chromosoma 119(1):59-72.
Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K, Johnson ES, Brown GW, Andrews BJ, Boone C et al. . 2013. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. J Cell Biol 201(1):145-63.
Strom L, Lindroos HB, Shirahige K, Sjogren C. 2004. Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16(6):1003-15.
Sung S, Li F, Park YB, Kim JS, Kim AK, Song OK, Kim J, Che J, Lee SE, Cho Y. 2014. DNA end recognition by the Mre11 nuclease dimer: insights into resection and repair of damaged DNA. Embo j 33(20):2422-35.
Terasawa M, Ogawa T, Tsukamoto Y, Ogawa H. 2008. Sae2p phosphorylation is crucial for cooperation with Mre11p for resection of DNA double-strand break ends during meiotic recombination in Saccharomyces cerevisiae. Genes Genet Syst 83(3):209-17.
Thompson DA, Stahl FW. 1999. Genetic control of recombination partner preference in yeast meiosis. Isolation and characterization of mutants elevated for meiotic unequal sister-chromatid recombination. Genetics 153(2):621-41.
Tsukamoto Y, Mitsuoka C, Terasawa M, Ogawa H, Ogawa T. 2005. Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol Biol Cell 16(2):597-608.
Ulrich HD. 2008. The fast-growing business of SUMO chains. Mol Cell 32(3):301-5.
Unal E, Arbel-Eden A, Sattler U, Shroff R, Lichten M, Haber JE, Koshland D. 2004. DNA damage response pathway uses histone modification to assemble a double-strand break-specific cohesin domain. Mol Cell 16(6):991-1002.
Usui T, Ogawa H, Petrini JH. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol Cell 7(6):1255-66.
Usui T, Ohta T, Oshiumi H, Tomizawa J, Ogawa H, Ogawa T. 1998. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95(5):705-16.
van Attikum H, Gasser SM. 2005a. ATP-dependent chromatin remodeling and DNA double-strand break repair. Cell Cycle 4(8):1011-4.
van Attikum H, Gasser SM. 2005b. The histone code at DNA breaks: a guide to repair? Nat Rev Mol Cell Biol 6(10):757-65.
Wang H, Shi LZ, Wong CC, Han X, Hwang PY, Truong LN, Zhu Q, Shao Z, Chen DJ, Berns MW et al. . 2013. The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet 9(2):e1003277.
Wang TF, Kleckner N, Hunter N. 1999. Functional specificity of MutL homologs in yeast: evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci U S A 96(24):13914-9.
Warren CD, Eckley DM, Lee MS, Hanna JS, Hughes A, Peyser B, Jie C, Irizarry R, Spencer FA. 2004. S-phase checkpoint genes safeguard high-fidelity sister chromatid cohesion. Mol Biol Cell 15(4):1724-35.
Williams GJ, Lees-Miller SP, Tainer JA. 2010. Mre11-Rad50-Nbs1 conformations and the control of sensing, signaling, and effector responses at DNA double-strand breaks. DNA Repair (Amst) 9(12):1299-306.
Williams RS, Dodson GE, Limbo O, Yamada Y, Williams JS, Guenther G, Classen S, Glover JN, Iwasaki H, Russell P et al. . 2009. Nbs1 flexibly tethers Ctp1 and Mre11-Rad50 to coordinate DNA double-strand break processing and repair. Cell 139(1):87-99.
Wilson S, Tavassoli M, Watts FZ. 1998. Schizosaccharomyces pombe rad32 protein: a phosphoprotein with an essential phosphoesterase motif required for repair of DNA double strand breaks. Nucleic Acids Res 26(23):5261-9.
Wiltzius JJ, Hohl M, Fleming JC, Petrini JH. 2005. The Rad50 hook domain is a critical determinant of Mre11 complex functions. Nat Struct Mol Biol 12(5):403-7.
You Z, Chahwan C, Bailis J, Hunter T, Russell P. 2005. ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25(13):5363-79.
Zhang L, Espagne E, de Muyt A, Zickler D, Kleckner NE. 2014. Interference-mediated synaptonemal complex formation with embedded crossover designation. Proc Natl Acad Sci U S A 111(47):E5059-68.
Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134(6):981-94.