研究生: |
黃莉勛 Huang, Li-Hsun |
---|---|
論文名稱: |
過渡金屬鎵磷酸鹽的水熱合成與性質研究 Hydrothermal Synthesis and Characterization of Transition Metal-incorporated Gallophosphates |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
李光華
Lii, Kwang-Hwa 黃暄益 Huang, Hsuan-Yi 江昀瑋 Chiang, Yun-Wei 蔣瑞光 Chiang, Ray-Kuang |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 368 |
中文關鍵詞: | 水熱合成 、鎵磷酸鹽 |
外文關鍵詞: | Hydrothermal Synthesis, Gallophosphates |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用多氮有機胺為模板,在中溫中壓水熱反應中得到15個新化合物,可以分成三個不同的類型。第I類以雙質子化的有機胺為模板合成出5個新穎的混金屬釩鎵磷酸鹽化合物,其中一為一維鏈狀結構、一為二維層狀結構以及三個三維多孔結構,並研究其合成條件、結構化學、化合物的熱穩定性、磁性表現與電子自旋共振光譜。這五個釩鎵磷酸鹽化合物在文獻中不多見的釩鎵磷酸鹽系統開發出更多新穎結構型式,並透過性質研究,進一步了解其磁性質與電子自旋共振光譜與結構之間的關係。
第II類利用一系列長鏈多氮有機胺(deta-、teta-、tepa-、peha-)搭配Mn、Zn過渡金屬成功合成過渡金屬鎵磷酸鹽MnGaPOs (MG-N3、MG-N4、MG-N5、MG-N6)及Zn/GaPOs (ZG-N3、ZG-N4、ZG-N5、ZG-N6)兩系列掌性的孔洞化合物,針對鋅鎵磷酸鹽在合成反應中固定Zn/Ga/P的比例,調控多氮有機胺的量維持酸鹼值在pH為7,在4個Zn/GaPOs化合物中,ZG-N3具有較佳的光致發光性,使用420 nm的激發波長,可產生在520 nm附近的發光性,Q.Y.為約30 %。
第III類運用非掌性多氮有機胺H3tepa3+與H3tren3+合成2個三質子化有機胺模板的新穎層狀鎵磷酸鹽PG-1、PG-2。H3tepa3+在PG-1結構中兼具有機胺模板及配位基之角色,與無機層中的Ga多面體為具有Ga-N鍵結接之八面體,PG-1為具掌性的化合物空間群P212121,針對這部份化合物進行Solid state NMR的性質研究。
在研究中,我們藉由單晶X光繞射方法,瞭解各個新物質詳細的結構,從結構的觀點探討合成、熱穩定性質、光致發光性質與非掌性反應物自組裝成掌性物質的機制,這些資料將對後續的研究有所貢獻或有助於開發新物質
In this research, 15 new compounds were synthesized by employing organic amine as templates under hydrothermal conditions. They were classified into three groups:
Group I : It Five diportanted organic-templated vanadium gallium phosphates are reported here, including one 1D chain structure, one layered structures, and three 3D porous structures. The synthesis conditions, structural chemistry, thermal stabilities, magnetic behavior and electron spin resonance spectra of these Five compounds are discussed therein. Vanadium gallophosphates with various structure reported herein reveal more novel topology in V/Ga/P system. Corellation between thermal stability, magnetism study, and electron spin resonance spectra are discussed, which may bring us to further understand the vanadium gallophosphate system.
Part II polyamine molecules with a diethylene triamine moiety, namely NH2(CH2CH2NH)n-1H, n = 3, 4, 5, and 6, are found to be effective templates for the homochiral crystallization of magnesium gallophosphates (MG-N3、MG-N4、MG-N5、MG-N6, MnGaPOs) and zinc gallophosphates (ZG-N3、ZG-N4、ZG-N5、ZG-N6, Zn/GaPOs). For zinc gallophosphates the Zn to Ga ratio of the products is tunable using a reaction mixture of a fixed Zn/Ga/P ratio but with the adjustment of pH around 7 via the addition of various amount polyamine templates. The intrinsic photoluminescence of the four compounds from different templates was studied and the ZG-N3 emitted a broad band centered at 520 nm after excitation at 420 nm with the best quantum yield around 30 %.
Part III two novel layer inorganic-organic composite gallophosphate, PG-1 and PG-2 have been synthesized by using achiral H3tepa3+and H3tren3+ as the structure director. The unique structure for PG-1 is built from strictly alternating GaO4N2 octahedra, GaO4 tetrahedra and PO4 tetrahedra through their vertices, forming a neutral layered architecture grafted with tri-protonated tetraethylenepentamine ligands. and charadterized by solid-state NMR spectroscopy.
In the three systems, every structure was well-characterized and extended to the discussion on their syntheses, thermal properties, luminescence and the mechanisms of self-assembly of achiral reactants to chiral products. The synthesis conditions and structure information of these compounds make contribution to further research, and also be beneficial to development of novel materials in the future.
1-7 參考文獻
[1] Julien, C. Material Science and Engineering 1990, B6, 9.
[2] (a) Fang, J.; Holloway, P. H.; Yu, J. E.; Jones, K. S.; Pathangey, B.; Brettschneider, E.; Anderson, T. J. Applied Surface Science 1993, 7 (b) Futh, A.; Gallinger, R. P.; Schuster, P.; Adolph, J.; Gaporalettio, O. Thin Solid Film 1992, 207, 202.
[3] Sharrock, M. P. MRS BULLETIN 1990, March, 53.
[4] (a) Hiroshi, M. JEE 1992, January, 32. (b) Zeng, Z. J. Phys. Chem. Solids 1991, 52, 659.
[5] Rickert, H. Angew. Chem. Int. Ed. Engl. 1978, 17, 37.
[6] Smith, J. V. Chem. Rev. 1988, 88, 149.
[7] (a) J. M. Thomas, R. Raja, G. Sankar, R. G. Bell, Nature 1999, 398, 227. (b) M. E. Davis, Nature 2002, 417, 813. (c)R. Murugavel, A. ChoudHury, M. G. Walawalkar, R. Pothiraja, C. N. R. Rao, Chem. Rev. 2008, 108, 3549.
[8] Celestian, A. J.; Parise, J. B.; Goodell, C.; Tripathi, A.; Hanson, J. Chem. Mater. 2004, 16, 2244
[9] Chae, H. K. et al. Nature 2004,427, 523
[10] Kuznickl, S.M.; et al. Nature 2001, 412, 720
[11] Thomas,J.M.; Raja, R.; Sankar, G.; Bell, R. G. Nature 1999, 398, 227
[12] H. de Sainte Claire Deville, C. R. Hebd. Seances Acad. Sci. 1862, 54, 324.
[13] Barrer, R. M. J. Chem. Soc. 1948, 127.
[14] Barrer, R. M.; Denny, P. J. J. Chem. Soc. 1961, 971
[15] Wagner, P.; Yoshikawa, M.; Lovallo, M.; Tsuji, K.; Taspatsis, M.; Davis, M. E. Chem. Comm. 1997, 2179.
[16] Freyhardt, C. C.; Khodabandeh, S.; Wagner, P.; Chen, C. Y.; Balkus, K. J.; Zones, S. I.; Davis, M. E. J. Am. Chem. Soc. 1997, 119, 8474.
[17] Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146.
[18] Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J. M.; Crowder, C. Nature 1988, 331, 698
[19] Jones, R. H.; Thomas, J. M.; Chen, J.; Xu. R.; Huo, Q.; Li, S.; Ma, Z.; Chippindale, A. M. J. Solid Sate Chem. 1993, 102, 204.
[20] (a)Khan, M. L.; Lee, Y. -S.; O’Conner, C. J.; Haushalter, R. C.; Zubieta, J. Chem. Mater. 1994, 6, 721. (b) Khan, M. I.; Lee, Y. S.; O’Conner, C. J.; Haushalter, R. C.; Zubieta, J. J. Am. Chem. Soc. 1994, 116, 4525. (c) Khan, M. I.; Meyer, L. M.; Haushalter, R. C.; Schweitzer, A. L.; Zubieta, J.; Dye, J. L. Chem. Mater. 1996, 8, 43. (d) Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta, J.; O’Conner, C. J.; Lee, Y. –S. Chem. Mater. 1993, 5, 1690.
[21] S. Neeraj, Srinivasan Natarajan, and C. N. R. Rao Angew. Chem. Int. Ed. 1999, 38, 3480-3483
[22] (a) Haushalter, R. C.; Mundi, L. A. Chem. Mater. 1992, 4, (b) Haushalter, R. C.; Strohmaier, K.; Lai, F. W. Science 1989, 246,1289.
[23] Cavellec, M.; Riou, D.; Ferey, G. Acta Crystallogr. Sect. C. 1995, 51, 2242.
[24] (a)Ferey, G.; Loiseau, T.; Riou, D. Mater, Sci. Forum 1994, 152, 125. (b) Ferey, G. J. Fluorine Chem. 1995, 72, 187. (c) Estermann, M.; McCusker, L. B.;Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352, 320. (d) Loiseau, T.; Ferey, G. Eur. J. Solid State Inorg. Chem. 1993, 30, 369. (e) Loiseau, T.; Ferey, G. J. Solid State Chem. 1994, 111, 403. (f) Loiseau, T.; Retoux, R.; Lacorre, P.; Ferey, G. J. Solid State Chem.1994, 111, 427. (g) Loiseau, T.; Ferey, G. J. Mater. Chem. 1996, 6, 1073. (h) Loiseau, T.; Ferey, G. Chem. Commun. 1997, 1093.
[25] Davis, M. E. Nature 2002, 417, 813.
[26] Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature, 1991, 352, 320.
[27] Yang, G. Y.; Sevov, S. C. J. Am. Chem. Soc. 1999, 121, 8389.
[28] Lin, C. H., Wang, S. L., Lii, K. H. J. Am. Chem. Soc. 2001, 123, 4649.
[29] (a) Liao, Y. C.; Liao, F. L. Chang, W. K.; Wang, S. L. J. Am. Chem. Soc. 2004, 126, 1320. (b) Feng, P. Chem. Commun. 2001, 1668. (c) Liao, Y. C.; Jiang, Y. C.; Wang, S. L. J. Am. Chem. Soc. 2005, 127, 12794. (d) Lin, C. H.; Yang, Y. C.; Chen, C. Y.; Wang, S. L. Chem. Mater. 2006, 18, 2095. (e) Jhang, P. C.; Yang, Y. C.; Lai, Y. C.; Liu, W. R.; Wang, S. L. Angew. Chem. Int. Ed. 2009, 48, 742
[30] Liao, Y. C.; Lin, C. H.; Wang, S. L. J. Am. Chem. Soc. 2005, 127, 9986.
[31] Moore, P. B.; Shen, J. Nature 1983, 306, 356.
[32] (a) Chippindale, A. M.; Cowley, A. R. Microporous and Mesoporous Materials,
1998, 21, 271. (b) Hartmann, M.; Kevan, L. Chem. Rev., 1999, 99, 635. (c) Feng, P.; Bu, X.; Stucky, G. D. Nature 1997, 388, 735.
[33] (a) Lin, C. H., Wang, S. L. Chem. Mater. 2002, 14, 96-102. (b) Hsu, K. F.; Wang, S. L. Chem. Commun. 2000, 135. (c) Hsu, K. F.; Wang, S. L. Inorg. Chem. 2000, 39, 1773. (d) Liao, Y. C. Lin, C. H. Wang, S. L. J. Am. Chem. Soc. 2005, 127, 9986.
[34] (a) M. J. Gray, J. D. Jasper, and A. P. Wilkinson Chem. Mater. 1997, 9, 976. (b) Jihong Yu, Yu Wang, Zhan Shi, and Ruren Xu Chem. Mater. 2001, 13, 2972-2978
[35] An, H.Y.; Wang, E.B.; Xiao, D. R.; Li,Y. G.; Su, Z. M.; Xu, L. Angew. Chem. Int. Ed. 2006, 45, 904.
[36] (a) Norquist, A. J.; O'Hare, D. J. Am. Chem. Soc., 2004, 126, 6673–6679 (b) Francis, R. J.; O'Hare, D. J. Chem. Soc., Dalton Trans.,1998,3133-3148.(c) Francis, R. J.; O'Brien, S.; Fogg, A. M.; Halasyamani, P. S.; O'Hare, D.; Loiseau, T.; Férey, G. J. Am. Chem. Soc., 1999, 121, 1002–1015.(d) Walton, R.I.; Loiseau, T.; O'Hare, D.; Férey, G. Chem. Mater., 1999, 11, 3201–3209.
[37] Li, J.; Li, L.; Liang, J.; Chen, P.; Yu, J.; Xu,Y.; Xu, R. Cryst. Growth Des., 2008, 7, 2318–2323.
[38] (a)Rabenau, R. Angew. Chem., Int. Ed. 1985, 24, 1026.(b) Landise, R. A. Chem.
Eng. News 1987, (Sept 28), 30.
[39] Cann, M.C.;Leadbeater, N.E. Microwave Heating as a Tool for Sustainable Chemistry. Taylor&Francis Group, Boca Raton.
[40] 王素蘭,科儀新知,民國九十四年二月第二十六卷第四期
[41] APEX II software package; Bruker AXS, Madison, WI, 2005
[42] Sheldrick, G. M. SAINT programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
[43] Sheldrick, G. M. SHELXTL programs, Release Version 5.1; Bruker AXS, Madison, WI, 1998.
[44] Brown, I. D.; Altermann, D. Acta Crystallogr. 1985, B41, 244.
[45] Alcock, N. W. Bonding and Structure; Ellis Horwood: New York, 1990
[46] Spek, L. Acta Crystallogr. 1990, A46, 34.
[47] Selwood, P. W. Magnetochemistry; Interscience : New York, 1956
[48] Pake, G. E. J. Chem. Phys. 1948, 16, 327.
[49] Chiang, Y. W.; Borbat, P. P. and Freed, J. H. J. Magn. Reson. 2005, 172, 279.