簡易檢索 / 詳目顯示

研究生: 魏守德
Shou-Der Wei
論文名稱: 快速與穩健的樣型比對演算法及其應用
Efficient and Robust Pattern Matching Algorithms for Different Applications
指導教授: 賴尚宏
Shang-Hong Lai
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 108
中文關鍵詞: 樣型識別正規化相關匹配法影像定位快速演算法絕對差值合平方差值合
外文關鍵詞: pattern matching, normalized cross correlation, image alignment, fast algorithm, sum of absolute differences, sum of squared differences
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 樣型識別在電腦視覺與影像處理的領域上有很多的應用,比如說立體對應,物體追蹤,物體偵測,樣型識別與視訊壓縮等等。最常用的相似度量測的方法有絕對差值合 (sum of absolute differences, SAD), 平方差值合 (the sum of squared differences, SSD)與正規化相關匹配法 (normalized cross correlation, NCC)。SSD相似度量測常用於物體追蹤與偵測,以SSD為主的搜尋法是藉由計算模板與在被搜尋的影像上的每一區塊之間的歐幾里德距離,而找到距離最小的候選區塊。傳統的完全搜尋法非常的耗時。在實際的應用上非常的需要快速有效率的方法。尤其是在視訊壓縮裡,區塊的移動向量估測是在視訊編碼中不可或缺的,可以用來找到時間軸上的相關性, 用來減少兩張連續畫面的重複部份,進而達到高壓縮率。雖然使用NCC 當作相似度量測能夠在光源均勻變化下找到最相似的位置,但是此種方法在光源不平均的情況下仍然不能夠正確的找到最佳位置。在某些實際應用上,比如說工業檢測上的影像定位(image alignment)與人臉辨識(face recognition),經常會遇到在不平均光源下找到最相似位置的問題。這此論文中,我們提出了三種不同類別的新型樣型比對演算法。第一種類別是以SAD與SSD為相似度量測為基礎的樣型比對方法,主要應用於視訊壓縮上的區塊移動向量偵測。而我們所提出來的第二種類別是以NCC 為基礎的快速影像比對方法,能夠抵抗均勻光源的變化。除了以上兩種以外,我們還發展了一個穩健且快速的影像比對方法可以用於工業檢測上的影像定位與不平均光源的人臉偵測上。


    Pattern matching has been widely used in many applications related to computer vision and image processing, such as stereo matching, object tracking, object detection, pattern recognition and video compression, etc. The most popular similarity measures are the sum of absolute differences (SAD), the sum of squared differences (SSD) and the normalized cross correlation (NCC). The SSD measure is very popular similarity measure for object tracking and object detection by calculating the Euclidean distance between the pattern and the candidate in the search image to find the one with the minimum distance. The traditional full search method is very time-consuming. For practical applications, an efficient pattern matching algorithm is strongly demanded especially for motion-compensated video compression. Although using NCC as the similarity measure can find the pattern under uniform lighting variation, but it cannot work well under uneven lighting condition. For the practical applications of image alignment for industrial inspection and face recognition, the problem becomes to finding a given pattern in the search image under uneven lighting conditions. In this dissertation, we propose three types of new pattern matching algorithms. The first one contains several fast template matching techniques based on minimizing SAD or SSD measure for block-based motion estimation in video compression. Secondly, we propose efficient normalized cross correlation algorithms for robust pattern matching under uniform illumination variations.. In addition to the above two categories, we also develop a robust and efficient image matching algorithm that can be applied to the image alignment for industrial inspection and the face recognition under lighting variations.

    Contents ABSTRACT...............................................................................II CONTENTS...............................................................................IV CHAPTER 1 INTRODUCTION..................................................................1 1.1 Contributions of this Dissertation..................................................5 1.2 Organization of this Dissertation...................................................9 CHAPTER 2 LITERATURE REVIEW............................................................10 2.1 Winner Update Scheme...............................................................16 2.2 Successive Elimination and Uniform Partition.......................................17 2.3 The Adaptive Partition and Elimination Order.......................................19 2.4 Pattern Matching on Walsh-Hadamard Domain..........................................20 CHAPTER 3 EFFICIENT ONLINE PATTERN MATCHING............................................22 3.1 Fast Template Matching by Applying Winner-Update on Walsh-Hadamard Domain..........22 3.1.1 The Proposed Method..............................................................23 3.1.2 Experimental Results.............................................................24 3.2 Winner Update on Walsh-Hadamard Domain for Fast Motion Estimation..................29 3.2.1 The Proposed Method..............................................................30 3.2.2 Experimental Results.............................................................33 3.3 Modified Winner Update with Adaptive Block Partition for Fast Motion Estimation....35 3.3.1 The Proposed Method..............................................................35 3.3.2 Experimental Results.............................................................37 3.4 Fast and Optimal Block Motion Estimation via Adaptive Successive Elimination.......38 3.4.1 The Proposed Method..............................................................39 3.4.2 Experiment Results...............................................................41 3.5 Discussion.........................................................................45 CHAPTER 4 FAST PATTERN MATCHING BASED ON NORMALIZED CROSS CORRELATION..................46 4.1 Proposed Fast NCC-Based Image Matching Algorithm...................................46 4.1.1 Novel Upper Bound for the Cross Correlation......................................46 4.1.2 Reject Candidate by the Multi-level Successive Elimination Algorithm.............49 4.1.3 Find the Best Match by Winner Update Scheme......................................50 4.1.4 Zero-mean Normalized Cross Correlation...........................................50 4.2 Implementation Details.............................................................51 4.3 Experimental Results...............................................................54 4.3.1 Experimental Results of Algorithm 4.1............................................55 4.3.2 Experimental Results of Algorithm 4.2............................................58 4.4 Discussion.........................................................................66 CHAPTER 5 ROBUST AND EFFICIENT TRAINING BASED PATTERN MATCHING.........................68 5.1 Proposed Robust Image Matching Algorithm...........................................69 5.1.1 Efficient Nearest-Neighbor Pattern Search........................................72 5.1.2 Energy-Minimization Based Matching...............................................77 5.2 Experiments on Image Alignment.....................................................79 5.2.1 Testing on Synthesized Images....................................................80 5.2.2 Real Image Alignment Experiment..................................................88 5.3 Experiments on Face Recognition....................................................89 5.3.1 Relative Gradient Feature........................................................90 5.3.2 Face Localization and Matching...................................................91 5.3.3 Robust Face Recognition System...................................................92 5.3.4 Experiments on Face Recognition..................................................94 5.4 Summary............................................................................96 CHAPTER 6 CONCLUSION...................................................................97 BIBLIOGRAPHY...........................................................................99

    [1] M. Gharavi-Alkhansari, "A fast globally optimal algorithm for template matching using low-resolution pruning", IEEE Trans. on Image Processing, Vol. 10, No. 4, pp. 526-533, April 2001.
    [2] Y. Hel-Or and H. Hel-Or, "Real-time pattern matching using projection kernels," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 27, No. 9, pp. 1430-1445, Sept. 2005.
    [3] S. Zhu and K. K. Ma, "A new diamond search algorithm for fast block-matching motion estimation," IEEE Trans. Image Processing, Vol. 9, No. 2, pp. 287-290, Feb. 2000.
    [4] T. Koga, K. Iinuma, A. Hirano, Y. Iijima, and T. Ishinguro, "Motion compensated interframe coding for video conferencing," Proc. Nat. Telecommun. Conf., 1981.
    [5] R. Li, B. Zeng and M.L. Liou, "A new three-step search algorithm for block motion estimation," IEEE Trans. Circuits Systems Video Technology, Vol. 4, No. 4, pp. 438-442, Aug. 1994.
    [6] L. M. Po and W. C. Ma, "A novel four-step search algorithm for fast block motion estimation," IEEE Trans. Circuits Systems Video Technology, Vol. 6, No. 3, pp. 313-317, June, 1996.
    [7] W. Li and E. Salari, "Successive elimination algorithm for motion estimation," IEEE Trans. Image Processing, Vol. 4, No. 1, pp. 105-107, Jan. 1995.
    [8] C.-H. Lee and L.-H. Chen, "A fast motion estimation algorithm based on the block sum pyramid," IEEE Trans. on Image Processing, Vol. 6, No. 11, pp. 1587-1591, Nov. 1997.
    [9] X. Q. Gao, C. J. Duanmu, and C. R. Zou, "A multilevel successive elimination algorithm for block matching motion estimation," IEEE Trans. Image Processing, Vol. 9, No. 3, pp. 501-504, Mar. 2000.
    [10] Y.S. Chen, Y.P. Huang, and C.S. Fuh, "A fast block matching algorithm based on the winner-update strategy," IEEE Trans. Image Processing, Vol. 10, No. 8, pp. 1212-1222, Aug. 2001.
    [11] J. Zhou, J. Li, and S. Yu, "Modified winner-update search algorithm for fast block matching," Pattern Recognition Letters Vol. 25, No 7, pp. 807-816, May 2004.
    [12] Y. Nie, and K. K. Ma, "Adaptive rood pattern search for fast block-matching motion estimation," IEEE Trans. Image Processing, Vol. 11, No. 12, pp. 1442-1449, Dec. 2002.
    [13] A. M. Tourapis, O. C. Au, and M. L. Liou, "Predictive motion vector field adaptive search technique (PMVFAST) - enhancing block based motion estimation," Proc. Visual Communications and Image Processing, Jan. 2002.
    [14] A. Chimienti, C. Ferraris, and D. Pau, "A complexity-bounded motion estimation algorithm," IEEE Trans. Image Processing, Vol. 11, No. 4, pp. 387-392. April 2002.
    [15] C. Zhu, W. S. Qi, and W. Ser, "Predictive fine granularity successive elimination for fast optimal block-matching motion estimation," IEEE Trans. on Image Processing, Vol. 14, No. 2, pp. 213- 221, Feb. 2005
    [16] P. Viola and M. Jones, "Robust real-time face detection," International Journal of Computer Vision, Vol. 52, No. 2, pp. 137-154, May 2004.
    [17] L. Di Stefano, S. Mattoccia, "Fast template matching using bounded partial correlation," Machine Vision and Applications, Vol. 13, No. 4, pp. 213-221, Feb. 2003
    [18] L. Di Stefano, S. Mattoccia, "A Sufficient Condition based on the Cauchy-Schwarz Inequality for Efficient Template Matching," IEEE International Conf. on Image Processing. September 14-17, 2003, Barcelona, Spain
    [19] J. P. Lewis, "Fast template matching," Vision Interface, pp. 120-123, 1995.
    [20] M. J. McDonnell, "Box-filtering techniques," Computer Graphics and Image Processing, Vol. 17, pp. 65-70, 1981.
    [21] M. Turk and A. Pentland, “Eigenfaces for recognition,” Journal of Cognitive Neuroscience, Vol. 3, No. 1, pp.71-86, 1991.
    [22] M. Turk and A. Pentland, “Face recognition using eigenfaces,” Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 586-591, 1991.
    [23] R. T. Chin, "Automatic visual inspection: 1981 to 1987," Computer Vision, Graphics, and Image Processing, Vol. 41, No. 3, pp. 346-381, Mar. 1988.
    [24] T. S. Newman and A. K. Jain, "A survey of automatic visual inspection," Computer Vision and Image Understanding, Vol. 61, No. 2, pp. 231-262, Mar. 1995.
    [25] S. Manickam, S. D. Roth, and T. Bushman, "Intelligent and optimal normalized correlation for high-speed pattern matching", Technical Report, Datacube Inc.
    [26] S. Ando, "Image field categorization and edge/corner detection from gradient covariance", IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No. 2, pp. 179-190, Feb. 2000.
    [27] H. Wolfson and I. Rigoutsos, "Geometric hashing: an overview", IEEE Magazine on Computational Science & Engineering, Vol. 4, No. 4, pp. 10-21, Oct. 1997.
    [28] S.-H. Lai and M. Fang, "A FLASH system for fast and accurate pattern localization", Proceedings of SPIE Conf. on Machine Vision Applications in Industrial Inspection VII, Vol. 3652, pp. 164-173, San Jose, California, Jan. 25-27, 1999.
    [29] J. McNames, "A fast nearest-neighbor algorithm based on a principal axis search tree", IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 23, No. 9, pp. 964-976, Sept. 2001.
    [30] S. A. Nene and S. K. Nayar, "A simple algorithm for nearest-neighbor search in high dimensions", IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 19, No. 9, pp. 989-1003, Sept. 1997.
    [31] S.-H. Lai "Robust image matching under partial occlusion and spatially varying illumination change", Computer Vision and Image Understanding, Vol. 78, pp. 84-98, April 2000.
    [32] G. A. F. Seber and C. J. Wild, Nonlinear Regression, John Wiley & Sons, 1989.
    [33] S. Kaneko, Y. Satoh, S. Igarashi, "Using selective correlation coefficient for robust image registration", Pattern Recognition, Vol. 36, No. 5, pp. 1165-1173, May 2003.
    [34] M.-S. Choi, W.-Y. Kim, "A novel two stage template matching method for rotation and illumination invariance", Pattern Recognition, Vol. 35, No. 1, pp. 119-129, 2002.
    [35] G. Wolberg and S. Zokai, "Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations", IEEE Trans. on Image Processing, Vol. 14, No. 10, pp 1422-1434. Oct. 2005.
    [36] A. Watt, 3D Computer Graphics, 3rd Edition, Addison-Wesley, 2000.
    [37] P. A. Viola, Alignment by maximization of mutual information, Ph.D. thesis, Massachusetts Institute of Technology, 1995.
    [38] E. Haber and J. Modersitzki, "Intensity gradient based registration and fusion of multi-modal images", Technical Report TR-2004-027-A, Department of Mathematics and Computer Science, Emory University, USA., May 2004.
    [39] W.-Y. Zhao, R. Chellappa, "Illumination-Insensitive face recognition using symmetric shape-from-shading," Proc. IEEE Conf. Computer Vision Pattern Recognition, pp. 286-293, 2000.
    [40] Y. Gao, K. H. Leung, "Face recognition using line edge map," IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 24, No. 6 pp. 764-779, 2002.
    [41] T. Barnabas, "Comparing face images using the modified Hausdorff distance," Pattern Recognition, Vol. 31, No. 12. pp. 1873-1881, 1998
    [42] P. N. Belhumeur, J. P. Hespanha, D. J. Kriegman, "Eigenfaces vs. Fisherfaces: recognition using class specific linear projection," IEEE Trans. Pattern Analysis Machine Intelligence, Vol. 19, No. 7, pp. 711-720, 1997.
    [43] A. S. Georghiades, D. J. Kriegman, P. N. Belhumeur, "From few to many: illumination cone models for face recognition under variable lighting and pose," IEEE Trans. Pattern Analysis Machine Intelligence., Vol. 23, No. 6, pp. 643-660, 2001.
    [44] A. Lemiux and M. Parizeau, "Experiments on eigenfaces robustness", International Conf. on Pattern Recognition, Quebec City, Canada, July 2002.
    [45] T. Sim, S. Baker, and M. Bsat, "The CMU Pose, Illumination, and Expression Database," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 25, No. 12, pp. 1615 - 1618, 2003.
    [46] B. Zitov□, J. Flusser, "Image registration methods: a survey," Image Vision Computing, Vol. 21, No. 11, pp. 977-1000, 2003
    [47] L. G. Brown, "A survey of image registration techniques,"ACM Computing Surveys, Vol. 24, No. 4, pp. 325-376, 1992.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE