研究生: |
鄭詔宇 Chao-Yu Cheng |
---|---|
論文名稱: |
油酸改質奈米氧化銅粉體在疏水性溶劑中的分散 Dispersion of oleate-modified CuO nano-particles in non-polar solvent |
指導教授: |
簡朝和
J. H. Jean |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 35 |
中文關鍵詞: | 奈米粉體 、分散 、有機懸浮液 、氧化銅 |
外文關鍵詞: | nano-powders, dispersion, organic suspension, cupric oxide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討兩種合成方法的奈米氧化銅粉體;氣相合成CuO-V以及液相析出CuO-P,經由油酸化學改質後在表面形成Cupric oleate錯化物,增強奈米氧化銅-正辛烷懸浮液的分散穩定性。實驗中經由黏度儀的量測比較兩種氧化銅粉體在正辛烷中的分散行為,並且藉由穿透式電子顯微鏡的觀察確認粉體表面油酸層吸附情形,最後利用紅外線光譜儀以及高解析電子能譜儀分析表面特性和化學鍵結。結果顯示CuO-P粉體表面帶有大量的氫氧基提供了與油酸根的反應位置,在表面形成較多的Cupric oleate化學鍵結,因此CuO-P有機懸浮液的分散穩定性遠優於CuO-V。此外,本研究亦根據DLVO理論,計算改質後氧化銅膠體粒子在整個有機分散系統的位能曲線。
Two nano-sized cupric oxide powders, which are synthesized by vapor-phase reaction and aqueous precipitation, are surface-modified with unsaturated oleic acid to form cupric oleate on the surface. This enhances the dispersibility of cupric oxide powders in a non-polar solvent of octane. The cupric oxide powder prepared by aqueous precipitation exhibits much better dispersion in octane than that synthesized by vapor-phase reaction. This is attributed to the presence of larger amounts of hydroxyl groups on the particle surface, forming more cupric oleate and thus enhancing the colloidal stability of the resulting suspension.
[1] T. Chartier, E. Streicher and P. Boch, “Phosphate Easters as Dispersants for the Tape Casting of Alumina,” Am. Ceram. Soc. Bull., 66 [11] 1653-55 (1987).
[2] P. D. Calvert, E. Tormey and R. L. Pober, “Fish Oil and Triglycerides as Dispersants for Alumina,” Am. Ceram. Soc. Bull., 65 [4] 669-72 (1986).
[3] R. Moreno and G. Cordoba, “Oil Dispersion of Alumina for Tape Casting,” Am. Ceram. Soc. Bull., 74 [7] 69-74(1995).
[4] K. Prabhakaran and C. Pavithran, “Cardanol: A New Dispersantfor Alumina in Toluene,” Am. Ceram. Soc., 83 [6] 1533-35 (2000).
[5] Z. Li and Y. Zhu, “Surface-modification of SiO2 Nanoparticleswith Oleic Acid,” Appl. Surf. Sci., 211, 315-20 (2003).
[6] V. M. B. Moloney, D. Parris and M. J. Edirisinghe, “Rheology of Zirconia Suspensions in a Nonpolar Organic Medium,” Am. Ceram. Soc., 78 [12] 3225-32 (1995).
[7] U. Paik, V. A. Hackley, S. C. Choi and Y. G. Jung, “The Effect of Electrostatic Repulsive Forces on the Stability of BaTiO3 Particles Suspended in Non-aqueous Media,” Colloid surf. A-Physicochem.Eng. Asp., 135, 77-88 (1998).
[8] P. Jeevanandam and K. J. Klabunde, “Redispersion and Reactivity on Surfactant-coated Magnesium Oxide Nanoparticles," Langmuir, 19, 5491-495 (2003).
[9] J. C. Liu, J. H. Jean and C. C. Li, “Dispersion of Nano-sized-alumina Powder in Non-polar Solvents,” Am. Ceram. Soc., 89 [3] 882-887 (2006).
[10] C. C. Li and M. H. Chang, “Colloidal Stability of CuO Nanoparticles in Alkanes via Oleate Modifications,” Mater. Lett., 58, 3903-907 (2004).
[11] G. Socrates, Infrared Characteristic Group Frequencies-Tables and Charts, 2nd ed., John Wiley and Sons, NY, 1994.
[12] P. Persson, M. Karlsson and L. O. Öhman,“Coordination of Acetate to Al(III) in Aqueous Solution and at the Water-Aluminum Hydroxide Interface: A Potentiometric and Attenuated Total Reflectance FTIR Study,” Geochim. Cosmochim. Acta, 62, 3657-668 (1998).
[13] M. R. Alexander, G. Beamson, C. J. Blomfield, G. Leggett and T.M.Duc, “Interaction of Carboxylic Acid with the Oxyhydroide Surface of Aluminum: Poly(acrylic acid), Acetic Acid and Propionic Acid on Pseudoboehmite,” J. Electron Spectrosc. Relat. Phenom., 121, 19-32 (2001).
[14] J. Leja, p.288-299 in Surface Chemistry of Froth Flotation, Plenum Press, NY, 1982.
[15] G. Anderegg and S. E. Rasmussen, part 1: organic ligands in Stability constants of metal-ion complexes with solubility products of inorganic substances, Metcalfe & Cooper limited, London, 1957.
[16] A. F. M. Barton, Chap. 5,6 in CRC Handbook of Solubility Parameters and other Cohesion Parameter, 2nd ed., CRC press, Boca Raton, FL, 1991.
[17] J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin-Elmer Corporation, Minnesota,1992.
[18] N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong and V. P. Dravid,“Interaction of Fatty Acid Monolayers with Cobalt Nanoparticles,” Nanoletters, 4 [2] 383-386 (2004).
[19] S. Y. Lee and M. T. Harris, “Surface Modification of Magnetic Nanoparticles Capped by Oleic Acids: Characterization and Colloidal Stability in Polar Solvents” Colloid and Interface Sci., 293, 401–408 (2006).
[20] H. S. Hamid and F. Eric, “XPS & FTIR Study of Adsorption Characteristics Using Cationic and Anionic Collectors on Smithsonite” Minerals & Materials Characterization & Eng., 5 [1] 21-45 (2006).
[21] D. H. Napper, Chap. 17 in Polymeric stabilization of colloidal dispersion, Academic Press, London, 1983.
[22] D. J. Shaw, Chap. 8 in Introduction to colloid and surface chemistry, 4th ed., Butterworth-Heinemann, London, 1992.
[23] J. N. Israelachvili, Chap. 11 in Intermolecular and surface forces, 2nd.ed., Academic Press, London, 1991.
[24] T. Sato and R. Ruch, Chap. 3 in Stabilization of colloidal dispersions by polymer adsorption, Marcel Dekker, NY, 1980.
[25] A. F. M. Barton, Chap. 13 in CRC Handbook of Solubility
Parameters and other Cohesion Parameter, 2nd ed., CRC press, Boca Raton, FL, 1991.