研究生: |
郭雅芃 Kuo, Ya-Peng |
---|---|
論文名稱: |
運用數值方法分析台灣國家品質獎與企業市場價值之關聯 The Relationship between Taiwan National Quality Award and the Market Value of the Firm: Application of Analytical Approach |
指導教授: |
蘇朝墩
Su, Chao-Ton |
口試委員: |
許俊欽
蕭宇翔 陳麗妃 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 62 |
中文關鍵詞: | 全面品質管理 、國家品質獎 、數值方法分析 |
外文關鍵詞: | Total quality management, national quality award, analytical approach |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對競爭日益激烈的全球化社會,全面品質管理顯得更趨重要,我國為提升產業競爭力與整體品質水準,設立國家品質獎,以獎勵成功推行全面品質管理的公司。本研究針對得獎公司做分析,探討得獎價值(得獎發布日前後,公司股價之波動),與公司獲獎後的長期表現。
在得獎價值方面,採用二次指數平滑法(Double Exponential Smoothing)與彈性倒傳遞類神經網路(Resilient Backpropagation ),發現部分公司發布日前後之股價,受獲獎訊息影響,但受影響之公司占整體獲獎公司之比例不高,整體得獎價值不顯著。在長期表現方面,以三種角度(年度、類股、個股)分別比較,公司之長期股價報酬率,與所屬類股之股價報酬率,何者較佳,最後發現兩者無顯著的差異。
Total quality management (TQM) is a key to success in competitive world. To encourage the companies to fully conduct TQM in production process, Taiwan government set up National Quality Award (NQA). This study investigates the short term impact of award-winning news on the market price by using exponential smoothing and resilient backpropagation. This study also extends to the long-term observation by comparing the return on investment (ROI) between award-winning companies and market sector indices.
It concludes that the stock price of the award-winning company may be upward in short-term, but no significant stock fluctuation in large parts of them. Furthermore, there is no evidence showing that there is significant contribution to the stock price comparing with the market sector indices in the long run.
[1] 蘇朝墩 (2013),品質工程:線外方法與應用,前程文化事業有限公司
[2] Adams, G., McQueen, G., & Seawright, K. (1999). Revisiting the stock price impact of quality awards. Omega, 27(6), 595-604.
[3] Adebiyi, A. A., Ayo, C. K., Adebiyi, M. O., & Otokiti, S. O. (2012). Stock price prediction using neural network with hybridized market indicators. Journal of Emerging Trends in Computing and Information Sciences, 3(1), 1-9.
[4] Ariyo, A. A., Adewumi, A. O., & Ayo, C. K. (2014, March). Stock price prediction using the ARIMA model. In Computer Modelling and Simulation (UKSim), 2014 UKSim-AMSS 16th International Conference on (pp. 106-112). IEEE.
[5] Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics, 2014.
[6] Brenner, J. L., D'Esopo, D. A., & Fowler, A. G. (1968). Difference equations in forecasting formulas. Management Science, 15(3), 141-159.
[7] Cryer, J. D., & Kellet, N. (1986). Time series analysis (Vol. 101). Boston: Duxbury Press.
[8] Conti, T. A. (2007). A history and review of the European Quality Award Model. The TQM magazine, 19(2), 112-128.
[9] Corredor, P., & Goñi, S. (2011). TQM and performance: Is the relationship so obvious?. Journal of Business Research, 64(8), 830-838.
[10] Deming, W. E. (1981). Improvement of quality and productivity through action by management. Global Business and Organizational Excellence, 1(1), 12-22.
[11] Dooley, K. J., Bush, D., Anderson, J. C., & Rungtusanatham, M. (1990). The United States' Baldrige Award and Japan's Deming Prize: Two guidelines for total quality control. Engineering Management Journal, 2(3), 9-16.
[12] De Faria, E. L., Albuquerque, M. P., Gonzalez, J. L., Cavalcante, J. T. P., & Albuquerque, M. P. (2009). Predicting the Brazilian stock market through neural networks and adaptive exponential smoothing methods. Expert Systems with Applications, 36(10), 12506-12509.
[13] Feigenbaum, A. V. (1951). Quality control: Principles, practice and administration: An industrial management tool for improving product quality and design and for reducing operating costs and losses. McGraw-Hill.
[14] Gardner, E. S. (1985). Exponential smoothing: The state of the art. Journal of forecasting, 4(1), 1-28.
[15] Hendricks, K. B., & Singhal, V. R. (1996). Quality awards and the market value of the firm: An empirical investigation. Management science, 42(3), 415-436.
[16] Hendricks, K. B., & Singhal, V. R. (2001). The long-run stock price performance of firms with effective TQM programs. Management Science, 47(3), 359-368.
[17] Juran, J. M. (1986). The quality trilogy. Quality progress, 19(8), 19-24.
[18] Kohara, K., Ishikawa, T., Fukuhara, Y., & Nakamura, Y. (1997). Stock price prediction using prior knowledge and neural networks. Intelligent systems in accounting, finance and management, 6(1), 11-22.
[19] Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert systems with Applications, 38(5), 5311-5319.
[20] Lau, R. S. M., Zhao, X., & Xiao, M. (2004). Assessing quality management in China with MBNQA criteria. International Journal of Quality & Reliability Management, 21(7), 699-713.
[21] Link, A. N., & Scott, J. T. (2011). Economic evaluation of the baldrige performance excellence program. NIST Planning Keport
[22] Lin, C. S., Chen, L. F., Su, C. T., & Kon, T. C. (2013). Stock price impact on the Taiwan national quality award. Total Quality Management & Business Excellence, 24(1-2), 158-170.
[23] Lin, C. S., & Su, C. T. (2013). The Taiwan national quality award and market value of the firms: An empirical study. International Journal of Production Economics, 144(1), 57-67.
[24] Riedmiller, M., & Braun, H. (1993). A direct adaptive method for faster backpropagation learning: The RPROP algorithm. In Neural Networks, 1993., IEEE International Conference on (pp. 586-591). IEEE.
[25] Valmohammadi, C., & Roshanzamir, S. (2015). The guidelines of improvement: Relations among organizational culture, TQM and performance. International Journal of Production Economics, 164, 167-178.
[26] Wang, J. H., & Leu, J. Y. (1996, June). Stock market trend prediction using ARIMA-based neural networks. In Neural Networks, 1996., IEEE International Conference on (Vol. 4, pp. 2160-2165). IEEE.
[27] Yoon, Y., & Swales, G. (1991, January). Predicting stock price performance: A neural network approach. In System Sciences, 1991. Proceedings of the Twenty-Fourth Annual Hawaii International Conference on (Vol. 4, pp. 156-162). IEEE.
[28] Zeller, T. L., & Gillis, D. M. (1995). Achieving market excellence through quality: the case of Ford Motor Company. Business Horizons, 38(3), 23-32.