研究生: |
盧俊庭 Lu, Chun-Ting |
---|---|
論文名稱: |
高穩定度微流道散熱器研究 Development of a Highly Stable Microchannel Heat Sink |
指導教授: |
潘欽
Pan, Chin |
口試委員: |
蘇育全
Su, Yu-Chuan 馮玉明 Ferng, Yuh-Ming 楊毓民 Yang, Yu-Min 李堅雄 Lee, Chien-Hsiung 潘欽 Pan, Chin |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 128 |
中文關鍵詞: | 漸擴微流道 、沸騰熱傳 、微機電 、人工成核址 、穩定性 |
外文關鍵詞: | diverging microchannel, flow boiling heat transfer, MEMS, artificial nucleation sites, stability |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,在半導體微小化技術不斷進步之下,相同面積中可容納的電子元件隨之增加,因此,單位面積所產生的熱量會遽增,使得電子元件必然會面臨散熱的難題。微流道沸騰熱傳因具有高傳熱能力與低操作功率而被視為一極具潛力的高移熱能力散熱技術。從文獻中可以發現,微流道內的流動沸騰是一極為不穩定的狀態,且當不穩定發生時,系統的壓力與溫度會發生激烈的震盪。這些不穩定現象對於微流道散熱器的應用而言,可能會造成系統提早乾化進而燒毀電子元件。
本研究主要目的是在發展一高穩定度且高移熱能力的微流道散熱器。微流道散熱器係利用微機電技術(MEMS)與雷射切割來製作三種具有不同人工成核址分佈與數量的多平行漸擴微流道。第一種微流道是不具任何人工成核址的10條平行漸擴微流道;第二種微流道是在流道後半段底部每間隔1 mm製作一人工成核址的10條平行漸擴微流道;第三種微流道是在整條流道(入口至出口)底部每間隔1 mm製作一人工成核址的10條平行漸擴微流道。研究中,藉由改變質量通率與加熱功率來探討人工成核址的分佈與數量對微流道內沸騰熱傳與流動穩定性之影響,並利用高速攝影機觀察微流道內氣泡的成核、成長及脫離後轉變彈狀流的流動現象。
藉由流譜的觀察發現,氣泡半徑的成長與時間會成線性關係而彈狀流長度的變化與時間會成指數關係並會受臨近流道氣泡成長的影響。研究中主要的雙相流譜為彈狀流與環形流。當臨界熱通率發生時,流道出口會有乾化的情形發生,並經常性地有液膜或液柱潤濕此乾化區域,此時雙相流譜主要為氣液界面呈波浪形的環形流。
沸騰熱傳分析結果顯示,熱通量與熱傳遞係會隨質量通率增加而增加。首先,在開始進入雙相沸騰區後,熱通量與熱傳遞係數會有顯著地上升。之後,熱通率隨著壁過熱度的增加而逐漸遞減並趨近一定值。另一方面,熱傳遞係數會隨乾度的增加而減少。這是因為乾度增加時,環形流的液膜有部分乾化,且乾化的面積比列隨乾度的增加而增加之故,藉由這個熱傳遞係數隨乾度減少的趨勢可以推論環形流對流沸騰熱傳可能為主要的熱傳機制。研究結果更顯示,工作流體的溶氧量對於臨界熱通率沒有明顯的影響,而人工成核的分佈與數量對於微流道的沸騰熱傳能力有顯著的提升。本研究亦發展出一可以準確預測本實驗熱傳遞數的經驗公式。
流動沸騰之穩定性研究顯示,在相同的熱通率與質量通率下,具有人工成核址的多平行漸擴微流道具有最高的穩定性,其次為不具人工成核址的多平行漸擴微流道,而多平行矩形微流道是最差的。
綜合本研究結果顯示,整條流道底部皆具有人工成核址的平行漸擴微流道在穩定性與沸騰熱傳能力的表現是最好的,此微流道的設計可被視為一具有高穩定度且高移熱能力的微流道散熱器。
With microprocessor performance increasing, the power generation from a microprocessor chip is expected to exceed 180 W/cm2 and the limits of current air-cooling technology will be reached, i.e., forced air heat sinks have become significantly larger with more expensive and noisier. Therefore, there is a need to address the thermal challenge of high-heat-flux for next generation of power electronics. Flow boiling in microchannels, considered as one of the most promising technologies, has the advantages of highest heat fluxes, lowest pumping powers, and the highest efficiency.
This study explores experimentally the flow boiling stability, channel-to-channel interactions and convective boiling heat transfer in 10 parallel diverging microchannels with/without ANS. Three types of diverging microchannel heat sinks (named type-1, type-2, and type-3) were designed. Each microchannel had a mean hydraulic diameter of 120 □m. Water and FC-72 was used as the working fluid with different mass fluxes, based on the mean cross section area, ranging from 99 kg/m2s to 999 kg/m2s. Type-1 system did not contain any ANS, whereas type-2 system contained ANS distributed uniformly along the downstream half of the channel and type 3 system contained ANS distributed uniformly along the entire channel. The ANS are laser-etched pits on the bottom wall of the channel and have a mouth diameter of 24 μm, as indicated by the heterogeneous nucleation theory.
Flow visualization shows that slug and annular flow is the dominant two-phase flow pattern. It may imply the dominant heat transfer mechanism may be convective boiling. During CHF, the dryout of annular liquid film appears near the outlet region with frequent rewetting of liquid film with slug bubble or rewetting of liquid column on the dryout surface, while wavy annular flow is the dominant flow pattern.
Moreover, correlations for boiling heat transfer coefficient and the CHF are developed and reviewed, respectively. The proposed correlations for boiling heat transfer coefficient show excellent agreement with the experimental data of the present study. Furthermore, the CHF correlation of Bowers and Mudawar can predict the present CHF data very well with the overall MAE of about 16%. Under boiling condition, a significant improvement in stabilizing the flow boiling, suppressing flow reversals, enhancing heat transfer performance can be obtained by using diverging microchannel heat sinks with ANS. Among three types of microchannels, type-3 system shows the best boiling heat transfer performance. This particular design can be regarded as a highly stable and high-heat-flux microchannel heat sink.
[1] Anandan, S.S., Ramalingam, V., 2008 “Thermal management of electronics: a review of literature” Therm. Sci. 12 5–26.
[2] Joshi, Y., Wei, X., 2005 “Micro and meso scale compact heat exchangers in electronics thermal management-a review” Proc.15th Int. Conf. on Enhanced, Compact and Ultra-Compact Heat Exchangers: Science, Engineering and Technology, NJ, USA.
[3] Tuckerman, D.B., Pease, R.F.W., 1981 “High-performance heat sink for VLSI” IEEE Electron Device Letters 2 126–129.
[4] Peng, X.F., Peterson, G.P., 1996 “Convective heat transfer and flow friction for water flow in microchannel structure” Int. J. Heat Mass Transfer 39 2599-2608.
[5] Qu, W., Mudawar, I., 2002 “Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink” Int. J. Heat Mass Transfer 45 2549–2565.
[6] Morini, G.L., 2004 “Single-phase convective heat transfer in microchannels: a review of experimental results” Int. J. Therm. Sci. 43 631–651.
[7] Owhaib, W., Palm, B., 2004 “Experimental investigation of single-phase convective heat transfer in circular microchannels” Exp. Therm. Fluid Sci. 28 105–110.
[8] Zhang, H.Y., Pinjala, D., Wong, T.N., Toh, K.C., Joshi, Y.K., 2005 “Single-phase liquid cooled microchannel heat sink for electronic packages” Appl. Therm. Eng. 25 1472–1487.
[9] Celata, G.P., Cumo, M., Marconi, V., McPhail, S.J., Zummo, G., 2006 “Microtube liquid single-phase heat transfer in laminar flow” Int. J. Heat Mass Transfer 49 3538–3546.
[10] Liu, D., Yu, L., 2011 “Single-phase thermal transport of nanofluids in a minichannel” J. Heat transfer 133 031009.
[11] Peng, X.F., Wang, B.X., 1993, “Forced convection and flow boiling heat transfer for liquid flowing through microchannels” Int. J. Heat Mass Transfer 36 3421–3427.
[12] Peng, X.F., Hu, H.Y., Wang, B.X., 1998 “Boiling nucleation during liquid flow in microchannels” Int. J. Heat Mass Transfer 41 101–106.
[13] Jiang, L., Wong, M., Zohar, Y., 1999 “Phase change in microchannel heat sinks with integrated temperature sensors” J. Microelectrimech. Syst. 8 358–365.
[14] Jiang, L., Wong, M., Zohar, Y., 2001 “Forced convection boiling in a microchannel heat sink” J. Microelectrimech. Syst. 10 80–87.
[15] Hetsroni, G., Mosyak, A., Segal, Z., Ziskind, G., 2002 “A uniform temperature heat sink for cooling of electronic devices” Int. J. Heat Mass Transfer 45 3275–3286.
[16] Lee, M., Wong, Y.Y., Wong, M., Zohar, Y., 2003 “ Size and shape effects on two-phase flow patterns in microchannel forced convection boiling” J. Micromech. Microeng. 13 155.
[17] Qu, W., Mudawar, I., 2003 “Flow boiling heat transfer in two-phase micro-channel heat sinks-I. Experimental investigation and assessment of correlation methods” Int. J. Heat Mass Transfer 46 2755–2771.
[18] Koşar, A., Kuo, C.J., Peles, Y., 2005 “Boiling heat transfer in rectangular microchannels with reentrant cavities” Int. J. Heat Mass Transfer 48 4867-4886.
[19] Kuo, C.J., Peles, Y., 2007 “Local measurement of flow boiling in structured surface microchannels” Int. J. Heat Mass Transfer 50 4513–4526.
[20] Liu, D., Garimella, S.V., 2007 “Flow boiling heat transfer in microchannels” J. Heat transfer 129 1321–1332.
[21] Peterson, G.P., Chang, C.S., 1998 “Two-phase heat dissipation utilizing porous-channels of high-conductivity material” J. Heat Transfer 120 243–252.
[22] Chen, Z.Q., Cheng, P., Zhao, T.S., 2000 “An experimental study of two phase flow and boiling heat transfer in bi-dispersed porous channels” Int. Comm. J. Heat Mass Transfer 27 293–302.
[23] Ammerman, C.N., You, C.M., 2001 “Enhancing small-channel convective boiling performance using a microporous surface coating” J. Heat Transfer 123 976-983.
[24] Rainey, K.N., Li, G., You, S.M., 2001 “Flow boiling heat transfer from plain and microporous coated surface in subcooled FC-72” J. Heat transfer 123 918–925.
[25] Jiang, P.X., Li, M., Lu, T.J., Yu, L., Ren, Z.P., 2004 “Experimental research on convection heat transfer in sintered porous plate channels” Int. J. Heat Mass Transfer 47 2085–2096.
[26] Hetsroni, G., Gurevich, M., Rozenblit, R., 2006 “Sintered porous medium heat sink for cooling of high-power mini-devices” Int. J. Heat Fluid Flow 27 259–266.
[27] Zhuang, Y., Ma, C.F., Qin, M., 1997 “Experimental study on local heat transfer with liquid impingement flow in two-dimensional micro-channels” Int. J. Heat Mass Transfer 40 4055–4059.
[28] Lee, D.Y., Vafai, K., 1999 “Comparative analysis of jet impingement and microchannel cooling for high heat flux applications” Int. J. Heat Mass Transfer 42 1555–1568.
[29] Wang, E.N., Zhang, L., Jiang, L., Koo, J.M., Maveety, J.G., Sanchez, E.A., Goodson, K.E., Kenny, T.W., 2004 “Micromachined jets for liquid impingement cooling of VLSI chips” J. Microelectrimech. Syst. 13 833–843.
[30] Sung, M.K., Mudawar, I., 2006 “Experimental and numerical investigation of single-phase heat transfer using a hybrid jet-impingement/micro-channel cooling scheme” Int. J. Heat Mass Transfer 49 682–684.
[31] Sung, M.K., Mudawar, I., 2008 “Single-phase hybrid jet-impingement/micro-channel cooling scheme” Int. J. Heat Mass Transfer 51 4342–4352.
[32] Barrau, J., Chenisana, D., Rosell, J., Tadrist, L., Ibanez, M., 2010 “An experimental study of a new hybrid jet impingement/micro-channel cooling scheme” Appl. Therm. Eng. 30 2058–2056.
[33] Mudawar, I., 2001 “Assessment of high-heat-flux thermal management schemes” Compon. Packaging Technolo. 24 122–141.
[34] Kandlikar, S.G., Bapat, A.V., 2007 “Evaluation of jet impingement, spray and microchannel chip cooling options for high heat flux removal” Heat Transfer Eng. 28 911–923.
[35] Agostini, B., Fabbri, M., Park, J.E., Wojtan, L., Thome, J.R., 2007 “State of the art of high heat flux cooling technologies” Heat Transfer Eng. 28 258–281.
[36] Li, H.Y., Tseng, F.G., Pan, C., 2004 “Bubble dynamics in microchannels. Part II: two parallel microchannels” Int. J. Heat Mass Transfer 47 5591–5601.
[37] Feng, S.H., Pan, C., 2005 “Bubble Dynamics in Multiple Parallel Silicon-based Microchannels” Proc. 16th Int. Symposium on Transport phenomena Prague.
[38] Liu, D., Lee, P.S., Garimella, S.V., 2005 “Prediction of the onset of nucleate boiling in microchannel flow” Int. J. Heat Mass Transfer 48 5134–5149.
[39] Hetsroni, G., Mosyak, A., Pogrebnyak. E., Segal, Z., 2005 “Explosive boiling of water in parallel micro-channels” Int. J. Multiph. Flow 31 371–392.
[40] Brutin, D., Topin, F., Tadrist, L., 2003 “Experimental study of unsteady convective boiling in heated minichannels” Int. J. Heat Mass Transfer 46 2957–2965.
[41] Xu, J., Zhou, J., Gan, Y., 2005 “Static and dynamic flow instability of a parallel microchannel heat sink at high heat fluxes” Energy Conv. Manag. 46 313–334.
[42] Muwanga, R., Hassan, I., 2007 “A flow boiling heat transfer investigation of FC-72 in a microtube using liquid crystal thermography” J. Heat Transfer 129 977–987.
[43] Kuo, C.J., Peles, Y., 2008 “Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities” J. Heat Transfer 130 072042.
[44] Lee, H.J., Yao, S.C., 2010 “Flow instability of evaporative micro-channels” Int. J. Heat Mass Transfer 53 1740–1749.
[45] Lee, H.J., Yao, S.C., 2010 “System instability of evaporative micro-channels” Int. J. Heat Mass Transfer 53 1731–1739.
[46] Celata, G.P., Saha, S.K., Zummo, G., Dossevi, D., 2010 “Heat transfer characterisitics of flow boiling in a single horizontal microchannel” Int. J. Therm. Sci. 49 1086–1094.
[47] Hong, F.J., Cheng, P., Wu, H.Y., 2011 “Characterization on the performance of a fractal-shaped microchannel network for microelectronic cooling” J. Micromech. Microeng. 21 065018.
[48] Liu, T.Y., Li, P.L., Liu, C.W., Gau, C., 2011 “Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface” Int. J. Heat Mass Transfer 54 126–134.
[49] Wang, Y., Sefiane, K., Bennacer, R., 2011 “Investigation of boiling and bubble confinement in a high aspect ratio micro-channel” Appl. Therm. Eng. 31 610–618.
[50] Bergles, A.E., Kandlikar, S.G., 2005 “On the nature of critical heat flux in microchannels” J. Heat Transfer 127 101–107.
[51] Kakac, S., Bon, B., 2007 “A Review of two-phase flow dynamic instabilities in tube boiling systems” Int. J. Heat Mass Transfer 51 399–433.
[52] Qu, W., Mudawar, I., 2002 “Prediction and measurement of incipient boiling heat flux in micro-channel heat sinks” Int. J. Heat Mass Transfer 45 3933–3945.
[53] Yen, T.H., Kasagi, N., Suzuki, Y., 2003 “Forced convective boiling heat transfer in microtubes at low mass and heat fluxes” Int. J. Multiph. Flow 29 1771–1792.
[54] Steinke, M.E., Kandlikar, S.G., 2004 “Control and effect of dissolved air in water during flow boiling in microchannels” Int. J. Heat Mass Transfer 47 1925–1935.
[55] Kandlikar, S.G., 2005 “High flux heat removal with microchannels – A roadmap op challenges and opportunities” Heat Transfer Eng. 26 5–14.
[56] Koşar, A., Kuo, C.J., Peles, Y., 2005 “Reduced pressure boiling heat transfer in rectangular microchannels with interconnected reentrant cavities” J. Heat Mass Transfer 127 1106–1114.
[57] Xu, J., Gan, Y., Zhang, D., Li, X., 2005 “Microscale boiling heat transfer in a microtimescale at high heat fluxes” J. Micromech. Microeng. 15 362–376.
[58] Chen, T., Garimella, S.V., 2006 “Measurements and high-speed visualizations of flow boiling of a dielectric fluid in a silicon microchannel heat sink” Int. J. Multiph. Flow 32 957–971.
[59] Yen, T.H., Shoji, M., Takemura, F., Suzuki, Y., Kasagi, N., 2006 “Visualization of convective boiling heat transfer in single microchannels with different shaped cross-sections” Int. J. Heat Mass Transfer 49 3884–3894.
[60] Huh, C., Kim, M.H., 2006 “An experimental investigation of flow boiling in an asymmetrically heated rectangular microchannel” Exp. Therm. Fluid Sci. 30 775–784.
[61] Bertsch, S.S., Groll, E.A., Garimella, S.V., 2008 “Refrigerant flow boiling heat transfer in parallel microchannels as a function of local vapor quality” Int. J. Heat Mass Transfer 51 4775–4787.
[62] Revellin, R., Haberschill, P., Bonjour, J., Thome, J.R., 2008 “Conditions of liquid film dryout during saturated flow boiling in microchannels” Chem. Eng. Sci. 63 5795–5801.
[63] Agostini, B., Thome, J.R., Fabbri, M., Michel, B., Calmi, D., Kloter, U., 2008 “High heat flux flow boiling in silicon multi-microchannels – Part I: Heat transfer characteristics of refrigerant R236fa” Int. J. Heat Mass Transfer 51 5400–5414.
[64] Agostini, B., Thome, J.R., Fabbri, M., Michel, B., Calmi, D., Kloter, U., 2008 “High heat flux flow boiling in silicon multi-microchannels – Part II: Heat transfer characteristics of refrigerant R245fa” Int. J. Heat Mass Transfer 51 5415–5425.
[65] Agostini, B., Thome, J.R., Fabbri, M., Michel, B., Calmi, D., Kloter, U., 2008 “High heat flux flow boiling in silicon multi-microchannels – Part III: Saturated critical heat flux of R236fa and two-phase pressure drops” Int. J. Heat Mass Transfer 51 5426–5442.
[66] Harirchian, T., Garimella, S.V., 2008 “Microchannel size effects on local flow boiling heat transfer to a dielectric fluid” Int. J. Heat Mass Transfer 51 3724–3735.
[67] Bertsch, S.S., Groll, E., Garimella, S.V., 2009 “Effects of heat flux, mass flux, vapor quality, and saturation temperature on flow boiling heat transfer in microchannels” Int. J. Multiph. Flow 35 142–154.
[68] Kuznetsov, V.V., Shamirzaev, A.S., 2009 “Flow boiling heat transfer in two-phase microchannel heat sink at low water mass flux” Micro. Sci. Tech. 21 305–311.
[69] Dong, T., Yang, Z., Bi, Q., Zhang, Y., 2008 “Freon R141b flow boiling in silicon microchannel heat sinks: experimental investigation” Heat and Mass Transfer 44 315–324.
[70] Harirchian, T., Garimella, S.V., 2008 “Effects of channel dimension, heat flux, and mass flux on flow boiling regimes in microchannels” Int. J. Multiph. Flow 35 349–362.
[71] Cheng, P., Wang, G., Quan, X., 2009 “Recent work on boiling and condensation in microchannels” J. Heat Transfer 131 043211.
[72] Bhide, R.R., Singh, S.G., Sridharan, A., Duttagupta, S.P., Agrawal, A., 2009 “Pressure drop and heat transfer characteristics of boiling water in sub-hundred micron channel” Exp. Therm. Fluid Sci. 33 963–975.
[73] Kandlikar, S.G., 2010 “Scale effects on flow boiling heat transfer in microchannel: A fundamental perspective” Int. J. Therm. Sci. 49 1073–1085.
[74] Harirchian, T., Garimella, S.V., 2011 “Boiling heat transfer and flow regimes in microchannels-a comprehensive understanding” J Electron. Pack. 133 011001.
[75] Lee, H.J., Lee, S.Y., 2001 “Heat transfer correlation for boiling flows in small rectangular horizontal channels with low aspect ratios” Int. J. Multiph. Flow 27 2043–2062.
[76] Liu, D.Y., Weng, X., Xu, X.G., 2011 “Experimental study on the heat transfer coefficient of water flow boiling in mini/microchannel” Exp. Therm. Fluid Sci. 35 1392–1397.
[77] Thome, J.R., 2004 “Boiling in microchannels: a review of experiment and theory” Int. J. Heat Fluid Fl. 25 128–139
[78] Bertsch, S.S., Groll, E.A., Garimella, S.V., 2008 “Review and comparative analysis of studies on saturated flow boiling in small channels” Nanosc. Microsc. Therm. Engineering 12 187–227.
[79] Kandlikar, S.G., 2004 “Heat transfer mechanisms during flow boiling in microchannels” J. Heat Transfer 126 8–16.
[80] Thome, J.R., 2006 “State-of-the-art overview of boiling and two-phase flows in microchannels” Heat Transfer Eng. 27 4–19.
[81] Wu, H.Y., Cheng, P., Wang, H., 2006 “Pressure drop and flow boiling instabilities in silicon microchannel heat sinks” J. Micromech. Microeng. 16 2138-2146.
[82] Hetsroni, G., Mosyak, A., Pogrebnyak, E., Segal, Z., 2006 “Periodic boiling in parallel micro-channels at low vapor quality” Int. J. Multiph. Flow 32 1141–1159.
[83] Qu, W., Mudawar, I., 2003 “Measurement and prediction of pressure drop in two-phase micro-channel heat sinks” Int. J. Heat Mass Transfer 46 2737–2753.
[84] Chang, K.H., Pan, C., 2007 “Two-phase flow instability for boiling in a microchannel heat sink” Int. J. Heat Mass Transfer 50 2078–2088.
[85] Huh, C., Kim, J., Kim, M.H., 2007 “Flow pattern transition instability during flow boiling in a single microchannel” Int. J. Heat Mass Transfer 50 1049–1060.
[86] Wang, G., Cheng, P., Wu, H., 2007 “Unstable and stable flow boiling in parallel microchannels and in a single microchannel” Int. J. Heat Mass Transfer 50 4297–4310.
[87] Muwanga, R., Hassan, I., MacDonald, R., 2007 “Characteristics of flow boiling oscillations in silicon microchannel heat sinks” J. Heat Transfer 129 1341–1345.
[88] Balasubramanian, P., Kandlikar, S.G., 2005 “Experimental study of flow patterns, pressure drop, and flow instabilities in parallel rectangular minichannels” Heat Transfer Engineering 26 20-27.
[89] Lee, J., Mudawar, I., 2005 “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part I-pressure drop characteristics” Int. J. Heat Mass Transfer 48 928–955.
[90] Koşar, A., Kuo, C.J., Peles, Y., 2006 “Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors” J. Heat Transfer 128 251-260.
[91] Wang, G., Cheng, P., Bergles, A.E., 2008 “Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels” Int. J. Heat Mass Transfer 51 2267–2281.
[92] Agostini, B., Thome, J.R., Fabbri, M., Michel, B., 2008 “High heat flux two-phase cooling in silicon multimicrochannels” IEEE T. Compon. Pack. T. 31 691-701.
[93] Kandlikar, S.G., Kuan, W.K., Willistein, D.A., Borrelli, J., 2006 “Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites” J. Heat Transfer 128 389–396.
[94] Zhang, L., Wang, E.N., Goodson, K.E., Kenny, T.W., 2005 “Phase change phenomena in silicon microchannels” Int. J. Heat Mass Transfer 48 1572–1582.
[95] Lu, C.T., Pan, C., 2006 “Bubble dynamics for convective boiling in silicon-based, converging and diverging microchannels” Proc.13th Int. Heat Transfer Conf., Sydney, Australia.
[96] Hsu, Y.Y., 1962 “On the size range of active nucleation cavities on a heating surface” J. Heat Transfer 84 207–216.
[97] Lee, P.C., Tseng, F.G., Pan, C., 2004 “Bubble dynamics in microchannels. Part I : single microchannel” Int. J. Heat Mass Transfer 47 5575–5589.
[98] Hartnett, J.P., Kostic, M., 1989 “Heat transfer to Newtonian and non-Newtonian fluids in rectangular ducts” Advances in Heat Transfer 19 247–356.
[99] Kawahara, A., Chung, P.M.Y., Kawaji, M., 2002 “Investigation of two phase flow pattern, void fraction and pressure drop in a microchannel” Int. J. Multiph. Flow 28 1411–1435.
[100] Qu, W., Mudawar, I., 2004 “Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks” Int. J. Heat Mass Transfer 47 2045–2059.
[101] Kandlikar, S.G., 2006 “Nucleation characteristics and stability considerations during flow boiling in microchannel” Exp. Therm. Fluid Sci. 30 44–47.
[102] Lee, J.D., Pan, C., 1999 “Dynamics of multiple parallel boiling channel systems with forced flows” Nucl. Eng. Des. 192 31–44.
[103] Lee, P.C. Pan, C., 2008 “Boiling heat transfer and two-phase flow of water in a single shallow microchannel with a uniform or diverging cross section” J. Micromech. Microeng. 18 025005.
[104] Lin, P.H., Fu, B.R., Pan, C., 2011 “Critical heat flux on flow boiling of methanol–water mixtures in a diverging microchannel with artificial cavities” Int. J. Heat Mass Transfer 54 3156–3166.
[105] Warrier, G.R., Dhir, V.K., Momoda, L.A., 2002 “Heat transfer and pressure drop in narrow rectangular channels” Exp. Therm. Fluid Sci. 26 53–64.
[106] Steinke, M.E., Kandlikar, S.G., 2004 “An experimental investigation of flow boiling characteristics of water in parallel microchannels” J. Heat Transfer 126 518–526.
[107] Lee, J., Mudawar, I., 2005 “Two-phase flow in high-heat-flux micro-channel heat sink for refrigeration cooling applications: Part II-heat transfer characteristics” Int. J. Heat Mass Transfer 48 941–955.
[108] Bowers, M.B., Mudawar, I., 1994 “High flux boiling in low flow rate, low pressure drop mini-channel and micro-channel heat sinks” Int. J. Heat Mass Transfer 37 321–332.
[109] Zhang, W., Hibiki, T., Mishima, K., Mi, Y., 2006 “Correlation of critical heat flux for flow boiling of water in mini-channels” Int. J. Heat Mass Transfer 49 1058–1072.
[110] Wojtan, L., Revellin, R., Thome, J. R., 2006 “Investigation of saturated flow boiling of water in a vertical small diameter tube” Exp. Therm. Fluid Sci. 30 765–774.
[111] Revellin, R., Thome, J.R., 2008 “A theoretical model for the prediction of the critical heat flux in heated microchannels” Int. J. Heat Mass Transfer 51 1216–1225.
[112] Moffat, R.J., 1988 “Describing the uncertainties in experimental results” Exp. Therm. Fluid Sci. 1 3–17.