研究生: |
郭晉榮 Jin-Rong Kuo |
---|---|
論文名稱: |
橫向高電壓4H-SiC PN 二極體設計與製作 The Design and Fabrication of Lateral High Voltage 4H-SiC PN Diode |
指導教授: |
黃智方
Chih-Fang Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 高功率 、高電壓 、橫向 、二極體 |
外文關鍵詞: | high power, high voltage, lateral, diode |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文重點為實驗出4H-SiC橫向高電壓的PN二極體,元件設計中結合超接面理論及降低表面電場的結構,目的為降低導通電阻及提高崩潰電壓。並且結合semi-insulating基板,目的為避免基板助長空乏效應。在光罩的設計上,利用繪圖軟體Laker,設計不同的漂移區及不同的場平板長度,並且元件採用對稱化設計,節省晶片面積。在製程步驟上,利用RIE製程形成元件的絕緣區域,並且使用模擬軟體,模擬離子佈植的摻雜量及能量,及使用快速熱退火製程形成元件歐姆接點,最後蒸鍍鋁金屬形成金屬接點及場平板。在量測結果上,元件的導通電阻隨漂移區長度及傳導長度增大而增大。由反向回覆特性的量測發現元件的特性接近主要載子元件,在與順向導通特性的溫度效應的結果比較,可以發現當溫度上升時,電阻隨溫度上升而上升,由這個結果也可以驗證元件為多數載子。在崩潰電壓的量測上,崩潰電壓隨漂移區長度及傳導長度增大而增大,場平板的設計在元件中也可以看到效果,最後在評比效能的BFOM值上,最佳可達20MW/cm2。
Abstract
In this thesis, we fabricate a 4H silicon carbide (SiC) lateral by applying super junction theory and reducing surface field structure to reduce specific on-resistance and enhance breakdown voltage. In addition, we combine semi-insulating substrate to reduce substrate- assisted-depletion effect. By using painting software Laker to design different drift region length and field plate length on the mask and design symmetrically to save wafer area. About the manufacturing process, isolation region were formed by reactive ion etch (RIE) first, then use trim (software) to imitate ion implant does and energy. Third, to form ohmic contacts by rapid thermal anneal (RTA). Finally, evaporating metal pad to develop metal contact and field plate.
The measurement results show that the on-resistance will enlarge with the increase of drift region length and transverse length. The results of reverse recovery characteristics test reveals characters of device are similar to majority carrier devices. In addition, one can find that the on-resistance will rise while temperature is rising; therefore, this result is very different form the traditional carrier devices. For the results of breakdown voltage measurement, breakdown voltage will also enlarge with the increase of drift region length and transverse length. The design of field plate also operates effectively in the device. Finally, the best value of Baliga Figure of Merit (BFOM) can reach to 20MW/cm2.
參考文獻
[1] A. R. Powell and L. B. Rowland, “SiC Material-Progress Status and Potential Roadblocks,” IEEE Proc., vol. 60, pp. 942-955, 2002.
[2] H. S. Lee, ”High Power Bipolar Junction Transistors in Silicon Carbide,” ISRN KTH/EKT/FR-2005/6-SE.
[3] K. Shenai, R. S. Scott, and B. J. Baliga, “Optimum Semiconductors for High-Power Electronics,” IEEE Trans. Electron Device, vol. 36, pp. 1811, 1989.
[4] H. R. Chang, and F. W. Holroyd, “High Voltage Power MOSFETs with a Trench-Gate Structure,” SOL. ST. Electron, vol. 33, no. 3, pp. 381-386, 1990.
[5] L. Lorenz, G. Deboy, A. Knapp, and M. Marz, “COOLMOS TM- A New Milestone in High Voltage Power MOS,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 3-10, 1999.
[6] T. Fujihira, ”Theory of Semiconductor Super Junction Devices.” Jpn. J. Appl. Phys., vol. 36, pp. 6254-6262, 1997.
[7] T. Fujihira, Y. Onishi, S. Iwamoto, and T. Sato, “24 mΩ-cm-2 680V Silicon Superjunction MOSFET,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 241–244, 2002.
[8] CoolMOS Datasheet, ser. SPW17N80C3: Infineon Technologies AG, 2001 [online] Available: http://www.infineon.com/.
[9] MDmesh Datasheet, ser. STP11NM80: STMicroelectronics, 2004 [online] Available: http://us.st.com/.
[10] W. Saito, I. Omura, S. Aida, S. Koduki, M. Izumisawa, H. Yoshioka,
and T. Ogura, “ High Breakdown Voltage (>1000 V)
Semi-Superjunction MOSFETs using 600-V class Superjunction
MOSFET Process, ” IEEE Trans. Electron Devices, vol. 52, pp.
2317-2322, 2005.
[11] R. Ng, F. Udrea, K. Sheng, K. Ueno, G. A. J. Amaratunga, and M. Nishiura, “Lateral Unbalance Super Junction (USJ)/3D-RESURF for High Breakdown Voltage on SOI,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 395–398, 2001.
[12] S. G. Nassif-Khalil and C. A .T. Salama, U.S. Patent Applied for.
[13] S. G. Nassif-Khalil and C. A. T. Salama, “ Super-junction LDMOST on a Silicon-on-Sapphire Substrate,” IEEE Trans. Electron Devices, vol. 50, pp. 1385-1391, 2003.
[14] M. Rub, M. Bar, G. Deml, H. Kapels, M. Schmitt, S. Sedlmaier, C. Tolksdorf, and A. Willmeroth, “A 600V 8.7Ohmmm2 Lateral Superjunction Transistor,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 1-4, 2006.
[15] N. Fujishima, M. Saito, A. Kitamura, Y. Urano, G. Tada, and Y. T suruta, “A 700 V Lateral Power MOSFET with Narrow Gap Double Metal Fieldplates Realizing Low On-Resistance and Long-Term Stability of Performance,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 255–258, 2001.
[16] J. A. Appels and H. M. J. Vas, “HIGH VOLTAGE THIN LAYER DEVICES (RESURF DEVICES),” IEDM Tech. Dig., pp. 238, 1979.
[17] J. Spitz , M. R. Melloch , J. A. Cooper, Jr. and M. A. Capano, ”2.6kV 4H-SiC Lateral DMOSFET’s,” IEEE Electron Device Lett., vol. 19, pp. 100-102, 1998.
[18] J. Spitz, M. R. Melloch, J. A. Cooper, Jr., G. Melnychuk, and S. E.
Saddow, “2.7 kV Epitaxial Lateral Power DMOSFETs in 4H-SiC,”
DRC, 2000.
[19] N. S. Saks, S. S. Mani, A. K. Agarwal, and M. G. Ancona, ”A 475-V
High Voltage 6H-SiC Lateral MOSFET,” IEEE Electron Device
Lett., vol. 20, pp. 431-433, 1999.
[20]K. Chatty, S. Banerjee, T. P. Chow, and R. J. Gutmann, ”High-Voltage Lateral RESURF MOSFETs on 4H-SiC,” IEEE Electron Device Lett., vol. 21, pp. 356-358, 2000.
[21] S. Banerjee, K. Chatty, T. P Chow and R. J. Gutmann, ”Improved High-Voltage Lateral RESURF MOSFETs in 4H-SiC,” IEEE Electron Device Lett., vol. 22, pp. 209-211, 2001.
[22] S. Banerjee, T. P. Chow, and R. J. Gutmann, ”Robust, 1000 V, 130 mΩcm2, Lateral, Tow-Zone RESURF MOSFET’s in 6H–SiC,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, pp. 69-72, 2002.
[23] S. Banerjee , T. P. Chow, and R. J. Gutmann, ”1300-V 6H-SiC Lateral MOSFETs with Two RESURF Zones,” IEEE Electron Device Lett., vol. 23, pp. 624-626, 2002.
[24] T. Kimoto, H. Kawano and J. Suda, “1200V-Class 4H-SiC RESURF MOSFETs with Low On-Resistances,” Proc. Intl. Symp. Power Semiconductor Devices & Integrated Circuits, 2005.
[25] T. Kimoto, H. Kawano, and J. Suda, “1330V, 67 mΩ-cm2 4H-SiC(0001) RESURF MOSFET,” IEEE Electron Device Lett, vol. 29, pp. 649-651, 2005.
[26] M. Noborio, Y. Negoro, J. Suda and T. Kimoto, ”Reduction of On-Resistance in 4H-SiC Multi-RESURF MOSFETs,” Materials Science Forum, vol. 527-529, pp. 1307, 2006.
[27] S. M. Sze, Semiconductor Devices Physics and Technology, Copyright 1997 by John Wiley & Sons Inc.
[28] Donald A. Neamen, Semiconductor Physics & Devices, Second Edition, Copyright 1997.1992 by McGraw-Hill Inc.
[29] B. J. Baliga, Power Semiconductor Device, Copyright 1996 by PWS Publishing Company.
[30] C. Hu, ”Optimum Doping Profile for Minimum Ohmic Resistance and High Breakdown Voltage,” IEEE Trans. Electron Devices, vol. ED26(3), 1979.
[31] E. Arnold, “Silicon-on-Insulator Devices for High Voltage and Power IC Applications,” J. Electrochem .Soc., vol. 141, no. 7, pp. 1983-1988, 1994.
[32]A.-B. Chen and P. Srichaikul, "Shallow Donor Levels and the Conduction Band Edge Structures in Polytypes of SiC," Phys. stat. sol. (b), vol. 202, no. 1, pp. 81-106, 1997.
[33]Integrated Systems Engineering, Zurich, Switzerland, DESSIS, ISE TCAD Release 7.5 User's Manual, 2001.
[34]M. Noborio, J. Suda, and T. Kimoto, “4H-SiC Lateral Double RESURF MOSFETs with Low on Resistance,” IEEE Trans. Electron Devices, vol. 54, no. 5, 2007.
[35]M. Miura, S. Nakamura, J. Suda, T. Kimoto, and H. Matsunami, “Fabrication of SiC Lateral Super Junction Diodes with Multiple Stacking p- and n-Layers,” IEEE Electron Device Lett., vol 24,
pp. 321-323, 2003.