簡易檢索 / 詳目顯示

研究生: 吳謹州
Wu, Chin Chou
論文名稱: 溫度應答性聲學相變液滴於腫瘤診療之研究
A Study of Thermal Responsive Acoustic Phase-Change Droplets in Tumor Theranostics
指導教授: 葉秩光
Yeh, Chih Kuang
口試委員: 陳之碩
李夢麟
許靖涵
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 95
中文關鍵詞: 相變液滴超音波測溫氟碳化合物聲學液滴汽化溫度應答性
外文關鍵詞: phase-changed droplets, ultrasonic thermometry, perfluorocarbon, acoustic droplet vaporization, temperature sensitivity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相變液滴(phase-changed droplets, PCDs)主要由磷脂殼層包覆低沸點的氟碳化合物所構成,可於超音波刺激下汽化膨脹成氣泡(acoustic droplet vaporization, ADV)提供超音波對比影像並釋放藥物,達到診斷與治療並進的應用。為了預判藥物釋放的區域好即時調整治療計畫提升腫瘤治療效率,本研究欲使用溫度影像預判ADV產生的區域,以長脈衝超音波進行腫瘤局部加熱,並以短脈衝汽化溫度應答性PCDs,於後續評估溫度影像與超音波對比影像之相關性,建立超音波加熱、汽化以及溫度成像的整合系統。
    溫度應答性PCDs內部由C5F12和C6F14混合而成,於體外量測穩定性、汽化效率與細胞毒性,決定最佳化之氟碳化合物混合比例、加熱溫度與超音波汽化參數。仿體實驗以熱耦器量測超音波加熱之升溫曲線並收集ADV影像,建立溫度與超音波對比影像資料庫,評估不同聲壓下之影像疊合率。最後以腫瘤小鼠靜脈注射溫度應答性PCDs,驗證超音波溫度影像於活體預判ADV位置之可行性。
    本研究使用C5F12:C6F14體積比7:3之溫度應答性PCDs,其平均粒徑為1.1 μm,濃度為20×109/mL。於8.6 MPa、3-cycle汽化參數下,汽化效率在37˚C與41˚C分別為29%與63%(p<0.01)。細胞活度於41˚C下降21%相較於37˚C(p<0.05),證實加熱可提升細胞膜通透性與藥物遞送。仿體溫度與超音波影像在41˚C下,影像疊合率為70 %、96 %於8.0、8.6 MPa下,可知8.6 MPa之溫度影像預判汽化位置有較高的準確率(p<0.05)。活體實驗可於加熱至41˚C後,看見腫瘤中的ADV影像,其與溫度影像之疊合率為80%,與仿體結果沒有統計差異(p>0.05)。
    本研究建立可同時加熱、汽化以及溫度成像之超音波整合系統,搭配溫度應答性PCDs,利用超音波加熱之溫度影像,以視覺化定位ADV區域,並提升腫瘤細胞膜通透性,可有效預測藥物釋放位置。未來期望運用在腫瘤治療上,即時調整藥物遞送區域,提升腫瘤治療效率。


    Phase-change droplets (PCDs) encapsulated liquid perfluorocarbon (PFC) by lipid shell are more stable than microbubbles in the circulation. PCDs have potentials for theranostics applications due to their ability of converting from liquid to gas phase under ultrasound excitations (referred to acoustic droplet vaporization, ADV). In order to predict the region of PCDs drug release by ADV and alter the aspect of treatment immediately, we established an integrated ultrasound system to monitor and control the drug release and utilized acoustic-based temperature map to predict the occurrence of ADV. The transmitting pulse was comprised of long pulsing for local tumor heating and short pulsing for vaporizing the thermal sensitive PCDs. The overlapping area between temperature map and ultrasound B-mode image was calculated.
    The thermal sensitive PCDs were composed of C5F12 and C6F14. The stability, ADV efficiency and cell toxicity of PCDs were estimated. The optimization of ADV threshold (including mixture ratio, temperature, and ultrasound parameters) was also estimated and discussed. We quantified the overlapping area of the ADV region and the temperature map by means of performing different parameters, and established the ultrasound contrast image database to evaluate the relationship between temperature profile and pressure distribution. Then the optimized conditions were applied in mouse tumor model and confirmed the feasibility of prediction ADV location in vivo.
    The ratio of C5F12 and C6F14 was 7: 3 and the corresponding PCDs were with average size of 1.1 μm and the concentration of 20×109/mL. In the ADV threshold conditions of 8.6 MPa and a 3-cycle pulse, the ADV efficiencies were 29% and 63%, at 37˚C and 41˚C (p<0.01), respectively. By comparisons at 37 ˚C, the cell viability decreased 21% at 41 ˚C (p<0.05), showing heating could enhance the cell membrane permeability and drug uptaken. In vitro phantom testing at 41 ˚C, the overlapping image ratios were 40% and 87%, at 8 and 8.6 MPa (p<0.01), respectively, confirming that the pressure of 8.6 MPa performed higher precision of ADV location. At the same condition, the overlapping image ratio in tumor model was 83%, with no significant difference (p>0.05).
    In conclusion, our proposed imaging technique provided a useful tool with the thermal sensitive PCDs to monitor the prediction of ADV. Operating ultrasound can monitor the ADV region guided by the temperature map. The heating with ADV process enhanced the cell permeability and precisely released drugs within tumor. Future work is to apply the proposed system to cancer therapy with a real-time monitoring drug delivery/release, and enhancing the efficiency of treatment.

    第一章 緒論 1 1.1 惡性腫瘤 1 1.1.1 治療方式 2 1.1.2 藥物釋放 3 1.1.2.1 控制釋放時機 5 1.1.2.2 控制釋放範圍 5 1.2 超音波觸發熱效應 6 1.2.1 超音波測溫技術 7 1.3 一般超音波對比劑:微氣泡 9 1.4 新式超音波對比劑:相變液滴 11 1.4.1 汽化影像偵測 13 1.4.2 汽化閾值 14 1.4.3 相變材料 15 1.4.4 汽化控制 17 1.4.5 操作環境 17 1.5 升溫邊際效用 18 1.6 研究動機 20 第二章 實驗方法 23 2.1 概論 23 2.2 溫度應答性材料製作 23 2.2.1 微液滴對比劑之物理特性測量 24 2.3 聲場掃描與校正 24 2.4 溫度應答性微液滴測試 25 2.4.1 定義汽化效率 26 2.4.2 溫度應答性液滴 28 2.4.3 聲學參數測試 29 2.5 細胞膜通透性測試 29 2.5.1 細胞準備 29 2.5.2 測試架構 30 2.6 超音波溫度影像 30 2.6.1 程式擬合 30 2.6.2 溫度演算法 31 2.6.2.1 位移累積和位移修正 32 2.6.2.2 平滑化和應變處理 34 2.6.2.3 數值校正 34 2.6.2.4 疊圖顯示 34 2.7 加熱影像同步系統 35 2.7.1 系統架構 35 2.7.2 脈衝時序整合 36 2.7.3 同步系統參數選擇 38 2.8 體內外實驗 39 2.8.1 仿體準備 39 2.8.2 體內準備 40 2.8.3 儀器架構 41 2.8.4 資料分析 42 第三章 結果討論 45 3.1 微液滴的性質測定 45 3.2 掃描聲場 47 3.3 溫度應答性微液滴 49 3.3.1 溫度應答性材料選擇 49 3.3.2 溫度應答性材料汽化閾值之測試 52 3.4 細胞通透性探討 54 3.5 超音波溫度影像 57 3.5.1 模擬影像 58 3.5.2 位移計算窗格 58 3.5.3 累積位移和動作修正 61 3.5.4 平滑化和計算熱應變 64 3.5.5 比對結果 66 3.5.6 溫度影像和疊圖顯示 67 3.6 體內外實驗 71 3.6.1 仿體測試 71 3.6.2 體內結果 77 3.6.3 統計分析 80 3.6.3.1 溫度梯度和汽化相關性 80 3.6.3.2 汽化亮度分布對於溫度邊界 82 第四章 結論 85 參考文獻 87

    [1] "行政院衛生署, "103年國民死因結果分析," 2014." pp.
    [2] H.C. Chiu, Y.H. Hsu & P.J. Lin. "Synthesis of pH-sensitive inulin hydrogels and characterization of their swelling properties." J Biomed Mater Res, vol.61, pp. 146-152, 2002.
    [3] T.Y. Liu, S.H. Hu, D.M. Liu, S.Y. Chen & I.W. Chen. "Biomedical nanoparticle carriers with combined thermal and magnetic responses." Nano Today, vol.4, pp. 52-65, 2009.
    [4] M.L. Fabiilli, K.J. Haworth, O.D. Kripfgans, P.L. Carson & J.B. Fowlkes. "The role of inertial cavitation in acoustic droplet vaporization." Ultrason, pp. 768-771, 2008.
    [5] P. Zhang & T. Porter. "An in Vitro Study of a Phase-Shift Nanoemulsion: A Potential Nucleation Agent for Bubble-Enhanced Hifu Tumor Ablation." Ultrasound in Medicine and Biology, vol.36, pp. 1856-1866, 2010.
    [6] A.A. Doinikov, P.S. Sheeran, A. Bouakaz & P.A. Dayton. "Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and in vitro validation." Medical physics, vol.41, pp. 2014.
    [7] A. Kheirolomoom, C.Y. Lai, S.M. Tam, L.M. Mahakian, E.S. Ingham, K.D. Watson & K.W. Ferrara. "Complete regression of local cancer using temperature-sensitive liposomes combined with ultrasound-mediated hyperthermia." J Control Release, vol.172, pp. 266-273, 2013.
    [8] C.Y. Lai, D. Kruse, J.W. Seo, A. Kheirolomoom & K.W. Ferrara. "A phantom for visualization of three-dimensional drug release by ultrasound-induced mild hyperthermia." Medical physics, vol.40, pp. 2013.
    [9] S. Dromi, V. Frenkel, A. Luk, B. Traughber, M. Angstadt, M. Bur, J. Poff, J.W. Xie, S.K. Libutti, K.C.P. Li & B.J. Wood. "Pulsed-high intensity focused ultrasound and low temperature sensitive liposomes for enhanced targeted drug delivery and antitumor effect." Clin Cancer Res, vol.13, pp. 2722-2727, 2007.
    [10] R. Staruch, R. Chopra & K. Hynynen. "Localised drug release using MRI-controlled focused ultrasound hyperthermia." Int J Hyperther, vol.27, pp. 156-171, 2011.
    [11] A. Ranjan, G.C. Jacobs, D.L. Woods, A.H. Negussie, A. Partanen, P.S. Yarmolenko, C.E. Gacchina, K.V. Sharma, V. Frenkel, B.J. Wood & M.R. Dreher. "Image-guided drug delivery with magnetic resonance guided high intensity focused ultrasound and temperature sensitive liposomes in a rabbit Vx2 tumor model." J Control Release, vol.158, pp. 487-494, 2012.
    [12] R. Staruch, R. Chopra & K. Hynynen. "Hyperthermia in Bone Generated with MR Imaging-controlled Focused Ultrasound: Control Strategies and Drug Delivery." Radiology, vol.263, pp. 117-127, 2012.
    [13] X. Ding, K. Cai, Z. Luo, J. Li, Y. Hu & X. Shen. "Biocompatible magnetic liposomes for temperature triggered drug delivery." Nanoscale, vol.4, pp. 6289-6292, 2012.
    [14] K.J. Chen, H.F. Liang, H.L. Chen, Y.C. Wang, P.Y. Cheng, H.L. Liu, Y.N. Xia & H.W. Sung. "A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery." Acs Nano, vol.7, pp. 438-446, 2013.
    [15] M.A. Moses, H. Brem & R. Langer. "Advancing the field of drug delivery: Taking aim at cancer." Cancer Cell, vol.4, pp. 337-341, 2003.
    [16] M.A. Manning, M. Mohamed & D.P. Burney. "Sublobar resection with I-125 brachytherapy for early-stage non-small cell lung cancer (NSCLC) using prefabricated mesh." J Clin Oncol, vol.27, pp. 2009.
    [17] L.H. Lindner, M.E. Eichhorn, H. Eibl, N. Teichert, M. Schmitt-Sody, R.D. Issels & M. Dellian. "Novel temperature-sensitive liposomes with prolonged circulation time." Clin Cancer Res, vol.10, pp. 2168-2178, 2004.
    [18] B.W. Paek, S. Vaezy, V. Fujimoto, M. Bailey, C.T. Albanese, M.R. Harrison & D.L. Farmer. "Tissue ablation using high-intensity focused ultrasound in the fetal sheep model: Potential for fetal treatment." Am J Obstet Gynecol, vol.189, pp. 702-705, 2003.
    [19] P. Moroz, S.K. Jones & B.N. Gray. "Status of hyperthermia in the treatment of advanced liver cancer." J Surg Oncol, vol.77, pp. 259-269, 2001.
    [20] B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix & H. Riess. "The cellular and molecular basis of hyperthermia." Crit Rev Oncol Hemat, vol.43, pp. 33-56, 2002.
    [21] J. van der Zee. "Heating the patient: a promising approach?" Ann Oncol, vol.13, pp. 1173-1184, 2002.
    [22] J.F. Ward. "High-Intensity Focused Ultrasound for Therapeutic Tissue Ablation in Surgical Oncology." Surg Oncol Clin N Am, vol.20, pp. 389-+, 2011.
    [23] G. Orgera, M. Krokidis, L. Monfardini, G. Bonomo, P. Della Vigna, N. Fazio & F. Orsi. "High Intensity Focused Ultrasound Ablation of Pancreatic Neuroendocrine Tumours: Report of Two Cases." Cardiovasc Inter Rad, vol.34, pp. 419-423, 2011.
    [24] S.E. Jung, S.H. Cho, J.H. Jang & J.Y. Han. "High-intensity focused ultrasound ablation in hepatic and pancreatic cancer: complications." Abdom Imaging, vol.36, pp. 185-195, 2011.
    [25] Y.-F. Zhou. "High intensity focused ultrasound in clinical tumor ablation." World journal of clinical oncology, vol.2, pp. 8, 2011.
    [26] S.K. Wu, C.F. Chiang, Y.H. Hsu, T.H. Lin, H.C. Liou, W.M. Fu & W.L. Lin. "Short-time focused ultrasound hyperthermia enhances liposomal doxorubicin delivery and antitumor efficacy for brain metastasis of breast cancer." Int J Nanomed, vol.9, pp. 4485-4494, 2014.
    [27] S.Y. Chae, Y.S. Kim, M.J. Park, J. Yang, H. Park, M.S. Namgung, H. Rhim & H.K. Lim. "High-Intensity Focused Ultrasound-Induced, Localized Mild Hyperthermia to Enhance Anti-Cancer Efficacy of Systemic Doxorubicin: An Experimental Study." Ultrasound in Medicine and Biology, vol.40, pp. 1554-1563, 2014.
    [28] R. Staruch, R. Chopra & K. Hynynen. "Investigations into the use of MRI-Controlled Focused Ultrasound for Hyperthermia-Mediated Drug Delivery." Aip Conf Proc, vol.1481, pp. 362-367, 2012.
    [29] H. Grull & S. Langereis. "Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound." J Control Release, vol.161, pp. 317-327, 2012.
    [30] G.Y. Hou, J.W. Luo, F. Marquet, C. Maleke, J. Vappou & E.E. Konofagou. "Performance Assessment of Hifu Lesion Detection by Harmonic Motion Imaging for Focused Ultrasound (Hmifu): A 3-D Finite-Element-Based Framework with Experimental Validation." Ultrasound in Medicine and Biology, vol.37, pp. 2013-2027, 2011.
    [31] D.A. McRae. "Initial in vivo experience with EIT as a thermal estimator during hyperthermia - Comment." Int J Hyperther, vol.12, pp. 593-594, 1996.
    [32] Y. Leroy, B. Bocquet & A. Mamouni. "Non-invasive microwave radiometry thermometry." Physiol Meas, vol.19, pp. 127-148, 1998.
    [33] P.M. Meaney, K.D. Paulsen, A. Hartov & R.K. Crane. "Microwave imaging for tissue assessment: Initial evaluation in multitarget tissue-equivalent phantoms." Ieee T Bio-Med Eng, vol.43, pp. 878-890, 1996.
    [34] B. Quesson, J.A. de Zwart & C.T.W. Moonen. "Magnetic resonance temperature imaging for guidance of thermotherapy." J Magn Reson Imaging, vol.12, pp. 525-533, 2000.
    [35] T. Varghese, J.A. Zagzebski, Q. Chen, U. Techavipoo, G. Frank, C. Johnson, A. Wright & F.T. Lee. "Ultrasound monitoring of temperature change during radiofrequency ablation: Preliminary in-vivo results." Ultrasound in Medicine and Biology, vol.28, pp. 321-329, 2002.
    [36] R. MaassMoreno & C.A. Damianou. "Noninvasive temperature estimation in tissue via ultrasound echo-shifts .1. Analytical model." J Acoust Soc Am, vol.100, pp. 2514-2521, 1996.
    [37] M.D. Abolhassani, A. Norouzy, A. Takavar & H. Ghanaati. "Noninvasive temperature estimation using sonographic digital images." J Ultras Med, vol.26, pp. 215-222, 2007.
    [38] R. Seip & E.S. Ebbini. "Noninvasive Estimation of Tissue Temperature Response to Heating Fields Using Diagnostic Ultrasound." Ieee T Bio-Med Eng, vol.42, pp. 828-839, 1995.
    [39] R.M. Arthur, W.L. Straube, J.W. Trobaugh & E.G. Moros. "Non-invasive estimation of hyperthermia temperatures with ultrasound." Int J Hyperther, vol.21, pp. 589-600, 2005.
    [40] C. Simon, P. VanBaren & E.S. Ebbini. "Two-dimensional temperature estimation using diagnostic ultrasound." Ieee T Ultrason Ferr, vol.45, pp. 1088-1099, 1998.
    [41] C.Y. Lai, D.E. Kruse, C.F. Caskey, D.N. Stephens, P.L. Sutcliffe & K.W. Ferrara. "Noninvasive Thermometry Assisted by a Dual-Function Ultrasound Transducer for Mild Hyperthermia." Ieee T Ultrason Ferr, vol.57, pp. 2671-2684, 2010.
    [42] R. Seip, P. Vanbaren & E.S. Ebbini. "Dynamic Focusing in Ultrasound Hyperthermia Treatments Using Implantable Hydrophone Arrays." Ieee T Ultrason Ferr, vol.41, pp. 706-713, 1994.
    [43] R. Seip, P. VanBaren, C. Simon & E.S. Ebbini. "Non-invasive spatio-temporal temperature estimation using diagnostic ultrasound." 1995 Ieee Ultrasonics Symposium Proceedings, Vols 1 and 2, pp. 1613-1616, 1995.
    [44] E.S. Ebbini, C. Simon, H. Lee & W.J. Choi. "Self-guided ultrasound phased arrays for noninvasive surgery." 1999 Ieee Ultrasonics Symposium Proceedings, Vols 1 and 2, pp. 1427-1430, 1999.
    [45] S. Tinkov, G. Winter, C. Coester & R. Bekeredjian. "New doxorubicin-loaded phospholipid microbubbles for targeted tumor therapy: Part I - Formulation development and in-vitro characterization." J Control Release, vol.143, pp. 143-150, 2010.
    [46] A.L. Klibanov. "Ligand-carrying gas-filled microbubbles: Ultrasound contrast agents for targeted molecular imaging." Bioconjugate Chem, vol.16, pp. 9-17, 2005.
    [47] P.J.A. Frinking, A. Bouakaz, J. Kirkhorn, F.J. Ten Cate & N. de Jong. "Ultrasound contrast imaging: Current and new potential methods." Ultrasound in Medicine and Biology, vol.26, pp. 965-975, 2000.
    [48] J.A. Kopechek, E.J. Park, Y.Z. Zhang, N.I. Vykhodtseva, N.J. McDannold & T.M. Porter. "Cavitation-enhanced MR-guided focused ultrasound ablation of rabbit tumors in vivo using phase shift nanoemulsions." Phys Med Biol, vol.59, pp. 3465-3481, 2014.
    [49] H. Pan, Y. Zhou, F. Sieling, J. Shi, J. Cui & C. Deng. "Sonoporation of cells for drug and gene delivery." Proceedings of the 26th Annual International Conference of the Ieee Engineering in Medicine and Biology Society, Vols 1-7, vol.26, pp. 3531-3534, 2004.
    [50] R.J. Browning, V. Rajkumar, R.B. Pedley, R.J. Eckersley & P.J. Blower. "Prospects for enhancement of targeted radionuclide therapy of cancer using ultrasound." J Labelled Compd Rad, vol.57, pp. 279-284, 2014.
    [51] N. Reznik, G. Lajoinie, O. Shpak, E.C. Gelderblom, R. Williams, N. de Jong, M. Versluis & P.N. Burns. "On the Acoustic Properties of Vaporized Submicron Perfluorocarbon Droplets." Ultrasound in Med. & Biol, vol.40, pp. 1379-1384, 2014.
    [52] O. Shpak, T.J.A. Kokhuis, Y. Luan, D. Lohse, N. de Jong, B. Fowlkes, M. Fabiilli & M. Versluis. "Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets." J Acoust Soc Am, vol.134, pp. 1610-1621, 2013.
    [53] O. Shpak, M. Verweij, H.J. Vos, N. de Jong, D. Lohse & M. Versluis. "Acoustic droplet vaporization is initiated by superharmonic focusing." P Natl Acad Sci USA, vol.111, pp. 1697-1702, 2014.
    [54] M. Zhang, M.L. Fabiilli, K.J. Haworth, J.B. Fowlkes, O.D. Kripfgans, W.W. Roberts, K.A. Ives & P.L. Carson. "Initial Investigation of Acoustic Droplet Vaporization for Occlusion in Canine Kidney." Ultrasound in Medicine and Biology, vol.36, pp. 1691-1703, 2010.
    [55] N. Rapoport, Z.G. Gao & A. Kennedy. "Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy." J Natl Cancer I, vol.99, pp. 1095-1106, 2007.
    [56] J.-Y. Fang, C.-F. Hung, S.-C. Hua & T.-L. Hwang. "Acoustically active perfluorocarbon nanoemulsions as drug delivery carriers for camptothecin: drug release and cytotoxicity against cancer cells." Ultrasonics, vol.49, pp. 39-46, 2009.
    [57] C.H. Wang, S.T. Kang, Y.H. Lee, Y.L. Luo, Y.F. Huang & C.K. Yeh. "Aptamer-conjugated and drug-loaded acoustic droplets for ultrasound theranosis." Biomaterials, vol.33, pp. 1939-1947, 2012.
    [58] N.Y. Rapoport, A.M. Kennedy, J.E. Shea, C.L. Scaife & K.H. Nam. "Controlled and targeted tumor chemotherapy by ultrasound-activated nanoemulsions/microbubbles." J Control Release, vol.138, pp. 268-276, 2009.
    [59] S.T. Kang, Y.C. Lin & C.K. Yeh. "Mechanical bioeffects of acoustic droplet vaporization in vessel-mimicking phantoms." Ultrason Sonochem, vol.21, pp. 1866-1874, 2014.
    [60] A.H. Lo, O.D. Kripfgans, P.L. Carson, E.D. Rothman & J.B. Fowlkes. "Acoustic droplet vaporization threshold: Effects of pulse duration and contrast agent." Ieee T Ultrason Ferr, vol.54, pp. 933-946, 2007.
    [61] N. Rapoport, D.A. Christensen, A.M. Kennedy & K.H. Nam. "Cavitation Properties of Block Copolymer Stabilized Phase-Shift Nanoemulsions Used as Drug Carriers." Ultrasound in Medicine and Biology, vol.36, pp. 419-429, 2010.
    [62] P.S. Sheeran, T.O. Matsunaga & P.A. Dayton. "Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures." Phys Med Biol, vol.59, pp. 379-401, 2014.
    [63] C. Lafon, V. Zderic, M.L. Noble, J.C. Yuen, P.J. Kaczkowski, O.A. Sapozhnikov, F. Chavrier, L.A. Crum & S. Vaezy. "Gel phantom for use in high-intensity focused ultrasound dosimetry." Ultrasound in Medicine and Biology, vol.31, pp. 1383-1389, 2005.
    [64] L.C. Phillips, C. Puett, P.S. Sheeran, P.A. Dayton, G.W. Miller & T.O. Matsunaga. "Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating (vol 134, pg 1473, 2013)." J Acoust Soc Am, vol.134, pp. 4575-4575, 2013.
    [65] B.L. Zhang, B. Hu, S.L. Kuang, H. Ying, R. Wu & J. Li. "A polyacrylamide gel phantom for radiofrequency ablation." Int J Hyperther, vol.24, pp. 568-576, 2008.
    [66] C.L. Yang, H. Zhu, S.C. Wu, Y.P. Bai & H.J. Gao. "Correlations Between B-Mode Ultrasonic Image Texture Features and Tissue Temperature in Microwave Ablation." J Ultras Med, vol.29, pp. 1787-1799, 2010.
    [67] P.S. Sheeran, T.O. Matsunaga & P.A. Dayton. "Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy." Phys Med Biol, vol.58, pp. 4513-4534, 2013.
    [68] T. Giesecke, D.J. Clauw, K.R. Ambrose, A.K. Lyden, D.A. Williams & R.H. Gracely. "Does depression influence mechanical hyperalgesia/allodynia in patients with fibromyalgia (FM)?" Arthritis Rheum, vol.48, pp. S86-S86, 2003.
    [69] J.A. Brown & W.H. Mears. "Physical Properties of Normal-Perfluorobutane." J Phys Chem-Us, vol.62, pp. 960-962, 1958.
    [70] R. Asami, T. Ikeda, T. Azuma, S. Umemura & K. Kawabata. "Acoustic Signal Characterization of Phase Change Nanodroplets in Tissue-Mimicking Phantom Gels." Japanese Journal of Applied Physics, vol.49, pp. 2010.
    [71] D.L. Miller, O.D. Kripfgans, J.B. Fowlkes & P.L. Carson. "Cavitation nucleation agents for nonthermal ultrasound therapy." J Acoust Soc Am, vol.107, pp. 3480-3486, 2000.
    [72] Y.J. Ho, Y.C. Chang & C.K. Yeh. "Improving Nanoparticle Penetration in Tumors by Vascular Disruption with Acoustic Droplet Vaporization." Theranostics, vol.6, pp. 392-403, 2016.
    [73] M. de Smet, E. Heijman, S. Langereis, N.M. Hijnen & H. Grull. "Magnetic resonance imaging of high intensity focused ultrasound mediated drug delivery from temperature-sensitive liposomes: an in vivo proof-of-concept study." J Control Release, vol.150, pp. 102-110, 2011.
    [74] G. Kong, R.D. Braun & M.W. Dewhirst. "Characterization of the effect of hyperthermia on nanoparticle extravasation from tumor vasculature." Cancer research, vol.61, pp. 3027-3032, 2001.
    [75] Y. Sun, M. Sugawara, R.V. Mulkern, K. Hynynen, S. Mochizuki, M. Albert & C.S. Zuo. "Simultaneous measurements of temperature and pH in vivo using NMR in conjunction with TmDOTP5-." Nmr Biomed, vol.13, pp. 460-466, 2000.
    [76] G. Kong, G. Anyarambhatla, W.P. Petros, R.D. Braun, O.M. Colvin, D. Needham & M.W. Dewhirst. "Efficacy of liposomes and hyperthermia in a human tumor xenograft model: Importance of triggered drug release." Cancer research, vol.60, pp. 6950-6957, 2000.
    [77] J.C. Bischof, J. Padanilam, W.H. Holmes, R.M. Ezzell, R.C. Lee, R.G. Tompkins, M.L. Yarmush & M. Toner. "Dynamics of Cell-Membrane Permeability Changes at Supraphysiological Temperatures." Biophys J, vol.68, pp. 2608-2614, 1995.
    [78] G.P. Lambert, C.V. Gisolfi, D.J. Berg, P.L. Moseley, L.W. Oberley & K.C. Kregel. "Selected contribution: Hyperthermia-induced intestinal permeability and the role of oxidative and nitrosative stress." J Appl Physiol, vol.92, pp. 1750-1761, 2002.
    [79] A. Blicher, K. Wodzinska, M. Fidorra, M. Winterhalter & T. Heimburg. "The Temperature Dependence of Lipid Membrane Permeability, its Quantized Nature, and the Influence of Anesthetics." Biophys J, vol.96, pp. 4581-4591, 2009.
    [80] J.F. Nagle & H.L. Scott. "Lateral Compressibility of Lipid Monolayers and Bilayers Theory of Membrane-Permeability." Biochim Biophys Acta, vol.513, pp. 236-243, 1978.
    [81] H. Ebel, P. Grabitz & T. Heimburg. "Enthalpy and volume changes in lipid membranes. I. The proportionality of heat and volume changes in the lipid melting transition and its implication for the elastic constants." J Phys Chem B, vol.105, pp. 7353-7360, 2001.
    [82] R. Dimova, B. Pouligny & C. Dietrich. "Pretransitional effects in dimyristoylphosphatidylcholine vesicle membranes: Optical dynamometry study." Biophys J, vol.79, pp. 340-356, 2000.
    [83] T. Heimburg. "Monte Carlo simulations of lipid bilayers and lipid protein interactions in the light of recent experiments." Curr Opin Colloid In, vol.5, pp. 224-231, 2000.
    [84] J. Ophir, T.H. Shawker, N.F. Maklad, J.G. Miller, S.W. Flax, P.A. Narayana & J.P. Jones. "Attenuation Estimation in Reflection - Progress and Prospects." Ultrasonic Imaging, vol.6, pp. 349-395, 1984.
    [85] C. Fournier, S.L. Bridal, A. Coron & P. Laugier. "Optimization of attenuation estimation in reflection for in vivo human dermis characterization at 20 MHz." Ieee T Ultrason Ferr, vol.50, pp. 408-418, 2003.
    [86] W. Raji & A. Rietbrock. "Attenuation (1/Q) estimation in reflection seismic records." J Geophys Eng, vol.10, pp. 2013.
    [87] R. Salomir, F.C. Vimeux, J.A. de Zwart, N. Grenier & C.T.W. Moonen. "Hyperthermia by MR-guided focused ultrasound: Accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction." Magnet Reson Med, vol.43, pp. 342-347, 2000.
    [88] P. Ramaekers, M. de Greef, J.M.M. van Breugel, C.T.W. Moonen & M. Ries. "Increasing the HIFU ablation rate through an MRI-guided sonication strategy using shock waves: feasibility in the in vivo porcine liver." Phys Med Biol, vol.61, pp. 1057-1077, 2016.
    [89] B. Emami & C.W. Song. "Physiological-Mechanisms in Hyperthermia - a Review." Int J Radiat Oncol, vol.10, pp. 289-295, 1984.
    [90] K.G. Tranberg. "Percutaneous ablation of liver tumours." Best Pract Res Cl Ga, vol.18, pp. 125-145, 2004.
    [91] D.N. Wheatley, C. Kerr & D.W. Gregory. "Heat-Induced Damage to Hela-S3 Cells - Correlation of Viability, Permeability, Osmosensitivity, Phase-Contrast Light-Microscopical, Scanning Electron-Microscopical and Transmission Electron-Microscopical Findings." Int J Hyperther, vol.5, pp. 145-162, 1989.
    [92] K. Kawabata, N. Sugita, H. Yoshikawa, T. Azuma & S. Umemura. "Nanoparticles with multiple perfluorocarbons for controllable ultrasonically induced phase shifting." Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol.44, pp. 4548-4552, 2005.
    [93] A. Dabbagh, B.J.J. Abdullah, C. Ramasindarum & N.H. Abu Kasim. "Tissue-Mimicking Gel Phantoms for Thermal Therapy Studies." Ultrasonic Imaging, vol.36, pp. 291-316, 2014.
    [94] C. Lafon, P.J. Kaczkowski, S. Vaezy, M. Noble & O.A. Sapozhnikov. "Development and characterization of an innovative synthetic tissue-mimicking material for High Intensity Focused Ultrasound (HIFU) exposures." IEEE Ultrasonics Symposium Proceedings, vol.1, pp. 1295-1298, 2001.
    [95] K. Hynynen. "MRI guided focused ultrasound surgery." Medical physics, vol.29, pp. 1329-1329, 2002.
    [96] J.A. Feshitan, F. Vlachos, S.R. Sirsi, E.E. Konofagou & M.A. Borden. "Theranostic Gd(III)-lipid microbubbles for MRI-guided focused ultrasound surgery." Biomaterials, vol.33, pp. 247-255, 2012.
    [97] N.A. Koonce, X. Chen, E.G. Moros, G. Shafirstein, P. Corry & R.J. Griffin. "PET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors." Int J Radiat Res, vol.13, pp. 1-12, 2015.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE