研究生: |
錢譽丹 Chien, Yu-Dan |
---|---|
論文名稱: |
小角度X光分析成長於奈米碳管及石墨烯之釕鉑核殼觸媒及其應用於直接甲醇燃料電池之研究 SAXS Characterization of MWCNTs and Graphene Supported Ru-Pt Core-Shell Nanocatalysts and their Performance for Fuel Cells Applications |
指導教授: |
林滄浪
Lin, Tsang-Lang 鄭有舜 Jeng, U-Ser |
口試委員: |
陳燦耀
Chen, Tsan-Yao 王本誠 Wang, Pen-Cheng |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 先進光源科技學位學程 Degree Program of Science and Technology of Synchrotron Light Source |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 103 |
中文關鍵詞: | 燃料電池 、小角度散射 、核殼觸媒 、石墨烯 、奈米碳管 、釕鉑觸媒 、電化學活性 、載體 |
外文關鍵詞: | fuel cell, small angle X-ray scattering, core shell structure, graphene, carbon nanotube, platinum-ruthenium catalyst, electrochemical activity, support |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
甲醇燃料電池的觸媒材料主要往兩個方向發展,一為減低成本,二為提升催化活性。觸媒材料可分為觸媒本體及承載觸媒的載體,近年的研究發現釕鉑核殼型的觸媒具有高效率且可以降低觸媒成本和具有良好的抗一氧化碳毒化的能力。常用的載體包括碳黑、奈米碳管及石墨烯,本研究主要研究直接在奈米碳管及石墨烯上成長核殼結構式觸媒及其觸媒電化學特性探討。
本研究主要是利用小角度X光散射分析來探討了利用聚醇還原法直接成長於載體的觸媒,並觀察鉑奈米粒子、釕奈米粒子和釕鉑核殼奈米粒子成長於溶液中、多壁奈米碳管和石墨烯上的粒徑及分布,發現成長於石墨烯的釕顆粒不會隨濃度的增加而變大,,成長在石墨烯上的釕鉑核殼觸媒,實驗結果得到的核殼體積比最接近理論值的體積比,也表示了在石墨烯上的確可成長出核殼結構的觸媒;相對於釕奈米粒子,鉑奈米粒子會隨濃度的增加而變大,尤其是成長在奈米碳管上的成長趨勢更為顯著。由電化學測量結果發現成長於載體上的釕鉑核殼觸媒其催化活性確實高於鉑觸媒的催化活性,也代表了用聚醇還原法直接成長於載體的釕鉑核殼觸媒是一種具有發展潛力的觸媒結構。
The development of the acidic-electrolyte, low-temperature fuel cell catalysts relies on the use of noble metals. Especially, Pt-Ru is a widely used noble metal combination for direct methanol fuel cell (DMFC) anodes and proton-exchange membrane fuel cell (PEMFC) anodes because of the improved CO tolerance and the long-term stability. However, to improve the performance, it concerns not only the metal part of the catalyst but also the support (usually carbon). Recently, graphene has been investigated as a new support of electrocatalysts for fuel cells. In this study, Ru@Pt nanoparticles supported on multiwall carbon nanotubes (MWCNTs) and graphene are successfully prepared as electrocatalysts by polyol redox process. The nanocatalysts were directly synthesized on the carbon surrport and the particle size and distribution were characterized by small angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and X-ray diffraction analysis (XRD). The measured SAXS data were analyzed on the basis of Schulz sphere model, poly core-shell ratio model and fractal model. The volume ratio of the core-shell Ru-Pt nanoparticles supported on grapheme as determined by SAXS analysis is found to be very close to the theoretical value. The TEM images and synchrotron SAXS analysis of the Ru@Pt catalysts supported on graphene indicate that the nanocatalysts were well dispersed on the surface of GNSs as compared to that supported on MWCNTs The catalytic efficiency of Ru@Pt MWCNTs/GNSs catalysts was examined by cyclic voltametry (CV) and methanol oxidation reaction (MOR). The electrodes fabricated with Ru@Pt-MWCNT and Ru@Pt-GNSs show enhanced activity for the electro-reduction of hydrogen over the Ru@Pt electrode. Also, results from stripping voltammetry for the adsorbed CO at Ru@Pt-carbon support catalyst electrodes reveal that CO oxidation is energetically favorable for these electrodes. Thus, Ru@Pt-carbon directly synthesized on MWCNTs and graphenes are suitable for fuel cell applications.
[1] Larminie, J. Fuel Cell Systems Explained. John Wiley & Sons Ltd, 2003.
[2] S. Colleen, Designing and Building Fuel Cells, McGraw-Hill, 1st Ed., 2007.
[3] H. Dohle, J. Divisek, and R. Jung, Journal of Power Sources, 2000, 86, 469-477.
[4] J. Divisek, R. Jung, K. Gärtner, J. Fuhrmann, Numerical simulation of Direct Methanol Fuel Cells (DMFC), in: Proceedings of 3rd European Congress of Chemical Engineering, Nuremberg, June 26-28, 2001.
[5] T. R. Ralph, and M. P. Hogarth, Platinum Metals Review, 2002, 46, 117-135.
[6] N. A. Tapan, W. E. Mustain, B. Gurau, G. Sandi, and J. Prakash, J. New Mater Electrochem Syst., 2004, 7, 281-286.
[7] Z. Liu, X. Y. Ling, X. Su, J. Y. Lee, The Journal of Physical Chemistry B, 2004, 108 , 8234-8240.
[8] J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang, The Journal of Physical Chemistry B, 2006, 110, 5245-5252.
[9] W. Li, X. Wang, Z. Chen, M. Waje, Y. Yan, The Journal of Physical Chemistry B, 2006, 110, 15353-15358.
[10] H. Liu, C. Song, L. Zhang, J. Zhang, H. Wang, D. P. Wilkinson, Journal of Power Sources, 2006, 155 , 95-110.
[11] W. Vielstich, Journal of the Brazilian Chemical Society, 2003, 14 , 503-509.
[12] T. Frelink, W. Visscher, and J. A. R. Van Veen, Surface Science, 1995, 335, 353-360.
[13] T. Y. Chen, T. J. M. Luo, Y. W. Yang, Y. C. Wei, K. W. Wang, T. L. Lin, and C. H. Lee, The Journal of Physical Chemistry C, 2012, 116, 16969-16978.
[14] E. Antolini, Applied Catalysis B, 2009, 88, 1-24.
[15] Y. Si, E. T. Samulski, Chemistry of Materials, 2008, 20, 6792-6797.
[16] Y. Li, W. Gao, L. Ci, C. Wang, P. M. Ajayan, Carbon, 2010, 48, 1124-1130.
[17] L. Dong, R. R. S. Gari, Z. Li, M. M. Craig, S. Hou, Carbon, 2008, 48, 781-787.
[18] S. M. Choi, M. H. Seo, H. J. Kim, W. B. Kim, Carbon, 2011, 49, 904-909.
[19] Y. Zhang, Y. Gu, S. Lin, J. Wei, Z. Wang, C. Wang, Y. Du, W. Ye, Electrochimica Acta., 2011, 56, 8746-8751.
[20] Y. Wang, J. Liu, L. Liu, D. D. Sun, Nanoscale Research Letters, 2011, 6, 241-248.
[21] H. Yang, F. Li, C. Shan, D. Han, Q. Zhang, L. Niu, A. Ivaska, J. Mater. Chem., 2009, 19, 4632-4638.
[22] R. Kou, Y. Shao, D. Mei, Z. Nie, D. Wang, C. Wang, V.V. Viswanathan, S. Park, I.A. Aksay, Y. Lin, Y. Wang, J. Liu, J. Am. Chem. Soc., 2011, 133, 2541-2547.
[23] F. Yang, Y. Liu, L. Gao, J. Sun, J. Phys. Chem. C, 2010, 114, 22085-22091.
[24] X. M. Wu, Y. J. Hu, J. Jin, N. L. Zhou, P. Wu, H. Zhang, C. X. Cai, Anal. Chem., 2010, 82, 3588-3596.
[25] P. Wu, Q. Shao, Y. J. Hu, J. Jin, Y. J. Yin, H. Zhang, C. X. Cai, Electrochim. Acta., 2010, 55, 8606-8614.
[26] A. Guha, W. Lu, T. A. Zawodzinski Jr., D. A. Schiraldi, Carbon, 2007, 45, 1506-1517.
[27] C. C. Chen, C. F. Chen, C. M. Chen, F. T. Chuang, Electrochem. Commun., 2007, 9, 159-163.
[28] A. Halder, S. Sharma, M. S. Hegde, N. Ravishankar, J. Phys. Chem. C., 2009, 113, 1466-14763.
[29] Y. J. Hu, H. Zhang, P. Wu, H. Zhang, B. Zhou, C. X. Cai, Phys. Chem. Chem. Phys., 2011, 13, 4083-4094.
[30] Y. J. Hu, J. Jin, P. Wu, H. Zhang, C. X. Cai, Electrochim. Acta, 2010, 56, 491-500.
[31] H. Zhang, X. Q. Xu, P. Gu, C. Y. Li, P. Wu, C. X. Cai, Electrochim. Acta., 2011, 56, 7064-7070.
[32] N. Shang, P. Papakonstantinou, P. Wang, S. R. P. Silva, J. Phys. Chem. C., 2010, 114, 15837-15841.
[33] Q. Yue, K. Zhang, X. Chen, L. Wang, J. Zhao, J. Liu, J. Jia, Chem. Commun., 2010, 46, 3369-3371.
[34] H. Bo¨nnemann, G. Khelashvili, Appl. Organomet Chem., 2010, 24, 257-268.
[35] M. Shirai, K. Igeta, M. Arai, Chem. Commun., 2000, 7, 623-624.
[36] I. K. Moon, J. Lee, R. S. Ruoff, H. Lee, Nat. Commun., 2010, 1, 73.
[37] J. Hu, B. He, J. Lu, L. Hong, J. Yuan, J. Song, L. Niu, Int J Electrochem Sci., 2012, 7, 10094-10107.
[38] Y Shao., S. Zhang, C. Wang, Z. Nie, J. Liu, Y. Wang, Y. Lin, J. Power Sources, 2010, 195, 4600-4605.
[39] X. Zhu, Y. Zhu, S. Murali, M. D. Stoller, R. S. Ruoff, ACS Nano., 2011, 5, 3333–3338.
[40] N. Seselj, C. Engelbrekt, and J. D. Zhang, Science Bulletin, 2015. 60, 864-876.
[41] S. M. Choi, M. H. Seo, H. J. Kim, W. B. Kim, Carbon, 2011. 49, 904-909.
[42] S. M. Choi, J. H. Kim, J. Y. Jung, E. Y. Yoon, W. B. Kim, Electrochim Acta, 2008, 53, 5804-11.
[43] H. J. Kim, Y. S. Kim, M. H. Seo, S. M. Choi, J. Cho, G. W. Huber, W. B. Kim, Electrochem Commun, 2010, 12, 32-5.
[44] S. H. Lee, N. Kakati, S. H. Jee, J. Maiti, Y. S. Yoon, Materials Letters, 2011. 65, 3281-3284.
[45] Y. Hu, P. Wu, H. Zhang, C. Cai, Applied Catalysis B-Environmental, 2012. 111, 208-217.
[46] H. Zhang, Y. J. Yin, Y. J. Hu, C. Y. Li, P. Wu, S. H. Wei, C. X. Cai, J. Phys. Chem. C., 2010, 114, 11861-11867.
[47] https://www.nsrrc.org.tw/chinese/lightsource.aspx
[48] 張石麟, 科學研究的神燈, 同步加速器光源科學發展期刊484期, 2013, 4月
[49] J. Teixeira, J. Appl. Cryst., 1988. 21, 781-785.
[50] G. V. Schulz, Z. Phys. Chem., 1935, 43, 25.
[51] M. Kotlarchyk and S-H. Chen, J. Chem. Phys., 1983, 79, 2461-2469.
[52] J. B. Hayter in "Physics of Amphiphiles--Micelles, Vesicles, and Microemulsions" Eds. V. DeGiorgio; M. Corti, North-Holland, pp. 59-93