研究生: |
張明軒 Chang, Ming-Hsuan |
---|---|
論文名稱: |
藉由隙環共振器顯微技術拍攝在近紅外之活體細胞內部影像 Intracellular Imaging of Living Cells by Split Ring Resonators Microscopy in Near-Infrared (NIR) Region |
指導教授: | 嚴大任 |
口試委員: |
嚴大任
張雍 王子威 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 76 |
中文關鍵詞: | 超材料 、活體細胞 、內部影像 、近紅外 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超材料為人工電磁材料,是由單位尺寸小於入射光波長所組成的結構。超材料的性質來自於內部結構產生共振的集合響應,所展現出物理與光學特性是自然界材料所無法展現的性質。其中,Pendry等科學家提出用來展現負透磁率與高頻磁子的人造磁性原子-隙環共振器一直是最常設計來產生磁特性的超材料。一般而言,其基態的共振模態行為是透過等校的電容-電感電路概念來解釋,並且其複數個共振響應的特性可以藉由駐玻式電漿共振響應模型來闡述並預估其所對應的響應波長。更重要的是,此共振模態對隙環共振器周圍介質環境很敏感,特別是當生物分子結合於隙環共振器的表面時,其共振模態的頻率會移動,使其可作為即時的、不需標定的折射率細胞生物感測器。
在過去,我們實驗室的研究中發現利用隙環共振設計的人造奈米結構超材料來觀察人體幹細胞中的折射率分佈。由於超材料的輻射光譜會隨著所處環境而改變,因此可直接由掃描每個位置的超材料得到人類幹細胞中的胞器影像。因為超材料不具毒性,觀測時也毋須侵入細胞,因此可作為即時影像且毋需染色標定的細胞生物顯微鏡。在本文的研究中,我們將超材料顯微鏡用於觀察活體細胞影像。藉由裝設FPA (focal plane array)之傅立葉轉換紅外線光譜儀量測結果得知,超材料顯微技術具備折射率感測器的功能,同時也可以得到近紅外折射率生物影像。
我們初步實現了活體細胞影像量測的可能性。比起目前的生物切片影像,超材料顯微技術可以降低活體細胞損傷,直接觀測折射率影像;超材料顯微技術可以做到快速,即時,低破壞的生物顯微平台。由於目前活體細胞影像的擷取技術仍有相當大的挑戰空間,有效地改善影像擷取技術有助於提升活體細胞樣本的存活率。對於未來幹細胞分化研究,細胞內部物質鑑定,細胞內部藥物傳遞及細胞膜間分子交換觀測,有相當助益。
1. Fernández-Suárez M, T.A., Fluorescent probes for super-resolution imaging in living cells. Nat Rev Mol Cell Bio, 2008
2. Terai T, N.T., Fluorescent probes for bioimaging applications. Curr Opin Chem Biol, 2008.
3. Hanson G, H.B., Fluorescent probes for cellular assays. Comb Chem High Throughput Screen, 2008.
4. Massignani M, C.I., Sun T, Hearnden V, MacNeil S, Blanazs A, et al., Enhanced fluorescence imaging of live cells by effective cytosolic delivery of probes. PLoS One, 2010.
5. Miyawaki, A., A. Sawano, and T. Kogure, Lighting up cells: labelling proteins with fluorophores. Nature Cell Biology, 2003: p. S1-S7.
6. Resch-Genger, U., et al., Quantum dots versus organic dyes as fluorescent labels. Nature Methods, 2008. 5(9): p. 763-775.
7. Allen R, D.G., Nomarski G., The zeiss-Nomarski differential interference equipment for transmitted-light microscopy. Z Wiss Mikrosk, 1969.
8. M., N., Magnoflorine in Caltha palustris L. Pharm Weekbl., 1963.
9. Paddock, S.W., Confocal laser scanning microscopy. Biotechniques, 1999. 27(5): p. 992-+.
10. Stehbens, S., et al., IMAGING INTRACELLULAR PROTEIN DYNAMICS BY SPINNING DISK CONFOCAL MICROSCOPY, in Imaging and Spectroscopic Analysis of Living Cells: Optical and Spectroscopic Techniques, P.M. Conn, Editor. 2012, Elsevier Academic Press Inc: San Diego. p. 293-313.
11. Tan, C.W., et al., Wnt Signalling Pathway Parameters for Mammalian Cells. Plos One, 2012. 7(2).
12. Denk W, S.J., Webb W., Two-photon laser scanning fluorescence microscopy. Science., 1990.
13. R. Barer, A.R.H.C., H.W. Thompson., Infrared spectroscopy with the reflecting
microscope in physics, chemistry, and biology. Nature 1949.
14. Fraser., D.B., Infra-red microspectrometry
with a 0.8 N. A. reflecting microscope. Discuss. Faraday Soc, 1950.
15. Levin, I.W. and R. Bhargava, Fourier transform infrared vibrational spectroscopic imaging: Integrating microscopy and molecular recognition, in Annual Review of Physical Chemistry. 2005. p. 429-474.
16. Reffner, J.A., P.A. Martoglio, and G.P. Williams, FOURIER-TRANSFORM INFRARED MICROSCOPIC ANALYSIS WITH SYNCHROTRON-RADIATION - THE MICROSCOPE OPTICS AND SYSTEM PERFORMANCE. Review of Scientific Instruments, 1995. 66(2): p. 1298-1302.
17. M.R. Carter, C.L.B., D.J. Fields, J. and Hernandez., Livermore Imaging Fourier Transform Spectrometer (LIFTIRS) in Imaging Spectrometry. Proc. SPIE, 1995.
18. Sun, Y., et al., Modulated terahertz responses of split ring resonators by nanometer thick liquid layers. Applied Physics Letters, 2008. 92(22).
19. Chiam, S.-Y., et al., Increased frequency shifts in high aspect ratio terahertz split ring resonators. Applied Physics Letters, 2009. 94(6).
20. Lee, H.-J. and J.-G. Yook, Biosensing using split-ring resonators at microwave regime. Applied Physics Letters, 2008. 92(25).
21. Debus, C. and P.H. Bolivar, Frequency selective surfaces for high sensitivity terahertz sensing. Applied Physics Letters, 2007. 91(18).
22. O'Hara, J.F., et al., Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Optics Express, 2008. 16(3): p. 1786-1795.
23. Chen, C.-Y., S.-C. Wu, and T.-J. Yen, Experimental verification of standing-wave plasmonic resonances in split-ring resonators. Applied Physics Letters, 2008. 93(3).
24. Homola, J., S.S. Yee, and G. Gauglitz, Surface plasmon resonance sensors: review. Sensors and Actuators B-Chemical, 1999. 54(1-2): p. 3-15.
25. Mock, J.J., D.R. Smith, and S. Schultz, Local refractive index dependence of plasmon resonance spectra from individual nanoparticles. Nano Letters, 2003. 3(4): p. 485-491.
26. Miller, M.M. and A.A. Lazarides, Sensitivity of metal nanoparticle plasmon resonance band position to the dielectric environment as observed in scattering. Journal of Optics a-Pure and Applied Optics, 2006. 8(4): p. S239-S249.
27. Raether, H., Surface plasmons on smooth and rough surfaces and on gratings. Springer Tracts in Modern Physics, 1988.
28. Lee, O.K.S., et al., Fluvastatin and lovastatin but not pravastatin induce neuroglial differentiation in human mesenchymal stem cells. Journal of Cellular Biochemistry, 2004. 93(5): p. 917-928.
29. Lee, K.D., et al., In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 2004. 40(6): p. 1275-1284.
30. Chiang, Y.-L., et al., Innovative antimicrobial susceptibility testing method using surface plasmon resonance. Biosensors & Bioelectronics, 2009. 24(7): p. 1905-1910.
31. Chang, Y.-T., et al., A multi-functional plasmonic biosensor. Optics Express, 2010. 18(9): p. 9561-9569.
32. Li, C.-T., T.-J. Yen, and H.-f. Chen, A generalized model of maximizing the sensitivity in intensity-interrogation surface plasmon resonance biosensors. Optics Express, 2009. 17(23): p. 20771-20776.
33. Chen, C.-Y., et al., Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Optics Express, 2009. 17(17): p. 15372-15380.
34. Singh, R., et al., Sharp Fano resonances in THz metamaterials. Optics Express, 2011. 19(7): p. 6312-6319.
35. Rahbari, R., et al., A novel L1 retrotransposon marker for HeLa cell line identification. Biotechniques, 2009. 46(4): p. 277-84.
36. WILLIAM F. SCHERER, M.D., JEROME T. SYVERTON, M.D., AND and M.D. GEORGE O. GEY, STUDIES ON THE PROPAGATION IN VITRO OF POLIOMYELITIS VIRUSES. Experimental Medicine, 1953. 97(5): p. 695–710.
37. Capes-Davis, A., et al., Check your cultures! A list of cross-contaminated or misidentified cell lines. Int J Cancer, 2010. 127(1): p. 1-8.
38. Bioresource Collection and Reserch Center (BCRC).
39. Pendry, J.B., et al., Magnetism from conductors and enhanced nonlinear phenomena. Ieee Transactions on Microwave Theory and Techniques, 1999. 47(11): p. 2075-2084.
40. Linden, S., et al., Magnetic response of metamaterials at 100 terahertz. Science, 2004. 306(5700): p. 1351-1353.
41. Driscoll, T., et al., Quantitative investigation of a terahertz artificial magnetic resonance using oblique angle spectroscopy. Applied Physics Letters, 2007. 90(9).
42. Pendry, J.B., et al., Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters, 1996. 76(25): p. 4773-4776.
43. Pendry, J.B., et al., Low frequency plasmons in thin-wire structures. Journal of Physics-Condensed Matter, 1998. 10(22): p. 4785-4809.