研究生: |
馬杜力卡 Sinha, Madhulika |
---|---|
論文名稱: |
金屬氧化物和石墨烯奈米材料的光催化和光治療診斷應用 Photocatalytic and Phototherapeutic Applications of Metal Oxide and Graphene-based Nanomaterials |
指導教授: |
凌永健
Ling, Yong-Chien |
口試委員: |
黃賢達 教授
Huang, Shang-Da 麥富德 教授 Mai, Fu-Der 張家耀 副教授 Chang, Jiayao 黃郁棻 副教授 Huang, Yu-Fen |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 治療診斷 |
外文關鍵詞: | Phototherapeutic |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
開發一個簡單、便宜,對於癌症只需單次且小劑量之非侵入式檢
測及治療方法極具挑戰性。為使此治療診斷方式有效,具有雙模態成
像功能的單光誘導光熱及光動力試劑受到高度期待。癌症一直被認為
是對世界人口的巨大威脅,導致全球數百萬的威脅。一般來說,癌症
會弱化體內的免疫系統,使其更容易被細菌攻擊及繼發感染。細菌性
病原體一般來說已在我們的生活中造成更嚴重的損害,且缺乏有效的
常規抗生素使我們面臨重大的疫情威脅。由於對於病原體具有非傳統
的殺傷及抑制方式,基於奈米材料的現代治療診斷技術提供了各種解
決方案。對於癌症來說,儘管受到應用系統和遞送過程的限制,且通
常藥物被設計成對於其目標疾病具有專一性,最近關於藥物遞送的研
究已經顯示出進展。
請注意設計多功能的奈米材料是一項非傳統且具有挑戰性的任務。
我們主要關注於採用奈米材料在生物醫學與治療領域的潛在突破。現
代的治療診斷技術需要專門的運送系統,而其餘的因不溶於水而受到
限制。
被認為是奇蹟材料的石墨烯,因其優越的電性、熱穩定性、表面
積,光學特性、機械性質以及良好的導電性,已經成為一種有前景的
材料。除了這些有趣的特性之外,石墨烯也是一種具有生物相容性的
材料,不像其他如富勒烯和奈米碳管等材料(CNTs)。
在最近設計的奈米材料,有機污染物,微生物感染等盛行全球且
進一步的風險中,將染料傾倒在地下水中,導致污染水源是最明顯的。
未經處理且含有染料的工業廢水在我們的土地和水體上釋放,這需要
更具策略性和更有效的水處理方法。對於這樣的問題,我們設計了一
種基於石墨烯的奈米複合材料,用於在保持生物相容性的情況下,有
效地破壞染料及有機污染物,如羅丹明B 和細菌。我們設計的材料
不僅能成功的殺死癌細胞,還能殺死細菌性病原體。
因此,發現如RGOPAA,DHA @ MGPA-ICT 和GV-PEI 等材料,
我們提供了多種具有生醫診斷和成像、光動力和光熱研究、磁導藥物
遞送,及對於被有機廢棄物污染之廢水之處理,一個有效且廣泛的潛
在應用材料選擇。
Developing of a simple and cost-effective strategy to diagnose and
treat cancer with single and minimal dosage through noninvasive methods
are highly challenging. To make such theranostic strategy effective, single
light induced photothermal and photodynamic reagent with dual modal
imaging capability is highly desired. Cancer has long been considered a
huge threat to the world population, leading to millions of threat worldwide.
Often cancer leads to weaker immune system in the body, making it easier
for bacterial attacks and secondary infections. Bacterial pathogens have
caused much more havoc in our lives in general and the lack of effective
conventional antibiotics exposes us to a major epidemic threat. Modern
therapeutics based on nanomaterials has provided various solutions due to
their unconventional approach towards pathogen killing and inhibition.
For cancer, recent studies on drug delivery have shown progress although
limited by the system of application and delivery process and often, drugs
are designed very specific to their target disease.
Designing of a multifunctional nanomaterials, keeping in mind their
unconventional applications is a challenging task. Our major concern must
be to employ nanomaterials for a potential breakthrough in the field of
biomedicine and therapy. Modern therapeutics demand for specialized
delivery system while rest are limited due to their insolubility in water.
Graphene, considered a wonder material has emerged as a promising
material owing to its fascinating properties in superior electronics, thermal
stability, specific surface areas, optical and mechanical, as well as good
conductivity. Apart from the other intriguing properties, graphene is also a
biocompatible material, unlike its other counter parts like fullerene and
carbon nanotubes (CNTs).
Among the globally prevalent and further emanating risks of recently
engineered nanomaterials, organic pollutants, microbial infections, etc.,
dumping of dyes in ground water thereby contaminating the water supply
is the most notable. Untreated Industrial wastes containing dyes are
released on our grounds and water bodies, which demands for a more
strategic and efficient water treatment methods. For such concerning
problems, we have designed a graphene based nanocomposite for
effectively destroying dyes and organic pollutants, like Rhodamine B and
bacterial population while still maintaining its biocompatibility. Our
designed materials have not only been successful in killing cancer cells,
but also bacterial pathogens.
Therefore, the discovery of materials like RGOPAA, DHA@MGPAICT
and G-V-PEI, we provide a diverse choice of materials with effective
and vast potential applications in biomedical diagnostics and imaging,
photodynamic and photothermal studies, magnetically guided drug
delivery, as well as effective treatment for organic water pollutants.
Chapter 1
1. Jaque, D.; Maestro, L. M.; del Rosal, B.; Haro- Gonzalez, P.; Benayas, A.; Plaza, J. L.; Rodr´ıguez, E. M.; and Sol´ea, J. G. Nanoparticles for photothermal therapies. Nanoscale, 2014, 6, 9494–9530.
2. Dolmans, D. E.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3, 380–387.
3. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T. and Liu, Z. Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Lett., 2010, 10, 3318–3323.
4. Murakami, T.; Nakatsuji, H.; Inada, M.; Matoba, Y.; Umeyama, T.; Tsujimoto, M.; Isoda, S.; Hashida, M. and Imahori, H. Photodynamic and Photothermal Effects of Semiconducting and Metallic-Enriched Single-Walled Carbon Nanotubes. J. Am. Chem. Soc., 2012, 134, 17862–17865.
5. Huang, X.; El-Sayed, I. H.; Qian, W. and El-Sayed, M. A. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorod. J. Am. Chem. Soc., 2006, 128, 2115–2120.
6. Huang, X.; Tang, S.; Mu, X.; Dai, Y.; Chen, G.; Zhou, Z.; Ruan, F.; Yang, Z. and Zheng, N. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nat. Nanotechnol., 2011, 6, 28–32.
7. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J.; Brinker, C. J. and Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem., Int. Ed., 2013, 52, 4160–4164.
8. Guo, L.; Yan, D. D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B. and Lu, W. Combinatorial Photothermal and Immuno Cancer Therapy Using Chitosan-Coated Hollow Copper Sulfide Nanoparticles. ACS Nano, 2014, 8, 5670–5681.
9. Li, J.; Jiang, F.; Yang, B.; Song, X.-R.; Liu, Y.; Yang, H.-H.; Cao, D.-R.; Shi, W.-R. and Chen, G.-N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep., 2013, 1–7.
10. Weissleder, R. A clearer vision for in vivo imaging. Nat. Biotechnol., 2001, 19, 316–317.
11. Smith, A. M.; Mancini, M. C. and Nie, S. Bioimaging: second window for in vivo imaging. Nat. Nanotechnol., 2009, 4, 710–711.
12. Zhan, Q.; Qian, J.; Liang, H.; Somesfalean, G.; Wang, D.; He, S.; Zhang, Z. and Andersson-Engels, S. Using 915 nm laser excited Tm3+/Er3+/Ho3+-doped NaYbF4 upconversion nanoparticles for in vitro and deeper in vivo bioimaging without overheating irradiation. ACS Nano, 2011, 5, 3744–3757.
13. Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J. and Xia, Y. Gold nanocages as photothermal transducers for cancer treatment. Small, 2010, 6, 811–817.
14. Tsai, M. F.; Chang, S.-H.; Cheng, F.-Y.; Shanmugam, V.; Cheng, Y.-S.; Su, C.-H. and Yeh, C.-S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano, 2013, 7, 5330–5342.
15. Welsher, K.; Sherlock, S. P. and Dai, H. Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc. Natl. Acad. Sci. U.S.A., 2011, 108, 8943–8948.
16. Hong, G.; Lee, J. C.; Robinson, J. T.; Raaz, U.; Xie, L.; Huang, N. F.; Cooke, J. P.; Dai, H. Multifunctional in vivo vascular imaging using near-infrared II fluorescence. J. Nat. Med., 2012, 18, 1841–1846.
17. Wang, H.; Cao, G.; Gai, Z.; Hong, K.; Banerjee, P. and Zhou, S. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles. Nanoscale, 2015, 7, 7885–7895.
18. Taratula, O.; Schumann, C.; Duong, T.; Taylor, K. L. and Taratula, O. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale, 2015, 7, 3888–3902.
19. Chandra, A.; Deshpande, S.; Shinde, D. B.; Pillai, V. K. and Singh, N. Mitigating the Cytotoxicity of Graphene Quantum Dots and Enhancing Their Applications in Bioimaging and Drug Delivery. ACS Macro Lett., 2014, 3, 1064–1068.
20. Li, Y.; Dong, H.; Li, Y. and Shi, D. Graphene-based nanovehicles for photodynamic medical therapy. Int. J. Nanomed., 2015, 10, 2451–2459.
21. Orecchion, M.; Cabizza, R.; Bianco, A. and Delogu, L. G. Graphene as cancer theranostic tool: progress and future challenges. Theranostics, 2015, 5, 710–723.
22. Maestro, L. M.; Haro-Gonzalez, P.; del Rosal, B.; Ramiro, J.; Caamano, A. J.; Carrasco, E.; Juarranz, A.; Sanz-Rodr´ıguez, F.; Sol´ea, J. G. and Jaque, D. Heating efficiency of multi-walled carbon nanotubes in the first and second biological windows. Nanoscale, 2013, 5, 7882–7889.
23. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R. and Ruoff, R. S. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater., 2010, 22, 3906–3924.
24. Avouris, P. and Dimitrakopoulos, C. Graphene: synthesis and applications. Mater. Today, 2012, 15, 86–97.
25. Pinto, A. M.; Gonçalves, I. C. and Magalh˜aes, F. D. Graphene-based materials biocompatibility: a review. Colloids Surf., B, 2013, 111, 188–202.
26. Gollavelli, G. and Ling, Y.-C. Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials, 2012, 33, 2532–2545.
27. Gollavelli, G. and Ling, Y.-C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials, 2014, 35, 4499–4507.
28. Wu, M. C.; Deokar, A. R.; Liao, J.-H.; Shih, P.-Y. and Ling, Y.-C. Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano, 2013, 7, 1281–1290.
29. Akhavan, O.; Ghaderi, E.; Aghayee, S.; Fereydooni, Y.; and Talebi, A. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem., 2012, 22, 13773–13781.
30. 29. Akhavan, O.; Ghaderi, E. and Emamy, H. Nontoxic concentrations of PEGylated graphene nanoribbons for selective cancer cell imaging and photothermal therapy. J. Mater. Chem., 2012, 22, 20626–20633.
31. Akhavan, O.; Ghaderi, E. Graphene Nanomesh Promises Extremely Efficient In Vivo Photothermal Therapy. Small, 2013, 9, 3593–3601.
32. Robinson, J. T.; Tabakman, S. M.; Liang, Y.; Wang, H.; Casalongue, H. S.; Vinh, D. and Dai, H. Ultrasmall Reduced Graphene Oxide with High Near-Infrared Absorbance for Photothermal Therapy. J. Am. Chem. Soc., 2011, 133, 6825–6831.
33. Zhang, W.; Guo, Z.; Huang, D.; Liu, Z.; Guo, X. and Zhong, H. Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials, 2011, 32, 8555–8561.
34. Jung, H. S.; Kong, W. H.; Sung, D. K.; Lee, M.-Y.; Beack, S. E.; Keum, D. H.; Kim, K. S.; Yun, S. H. and Hahn, S. K. Nanographene Oxide–Hyaluronic Acid Conjugate for Photothermal Ablation Therapy of Skin Cancer. ACS Nano, 2014, 8, 260–268.
35. Chen, J.; Wang, X. and Chen, T. Facile and green reduction of covalently PEGylated nanographene oxide via a ‘water-only’ route for high-efficiency photothermal therapy. Nanoscale Res. Lett., 2014, 9, 86.
36. Shi, X.; Gong, H.; Li, Y.; Wang, C.; Cheng, L. and Liu, Z. Graphene-Based Magnetic Plasmonic Nanocomposite for Dual Bioimaging and Photothermal Therapy. Biomaterials, 2013, 34, 4786–4793.
37. Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y. and Liu, Z. Multimodal Imaging Guided Photothermal Therapy using Functionalized Graphene Nanosheets Anchored with Magnetic Nanoparticles. Adv. Mater., 2012, 24, 1868–1872.
38. Pramanik, A.; Chavva, S. R.; Fan, Z.; Sinha, S. S.; Nellore, B. P. V. and Ray, P. C. Extremely High Two-Photon Absorbing Graphene Oxide for Imaging of Tumor Cells in the Second Biological Window. J. Phys. Chem. Lett., 2014, 5, 2150–2154.
39. Pramanik, A.; Fan, Z.; Chavva, S. R.; Sinha, S. S. and Ray, P. C. Highly Efficient and Excitation Tunable Two-Photon Luminescence Platform For Targeted Multi-Color MDRB Imaging Using Graphene Oxide. Sci. Rep., 2014, 4, 6090.
40. Derfus, A.M.; Chan, W. C. W. and Bhatia, S. N. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Lett. 2004, 4, 11–18.
41. Samia, A. C.; Chen, X. and Burda, C. Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 2003, 125, 15736–15737.
42. Bakalova, R.; Ohba, H.; Zhelev, Z.; Ishikawa, M. and Baba, Y. Quantum Dot anti-CD Conjugates: Are They Potential Photosensitizers or Potentiators of Classical Photosensitizing Agents in Photodynamic Therapy of Cancer? Nano Lett. 2004, 9, 1567–1573.
43. Claap, A.R; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; and Mattoussi, H. Fluorescence Resonance Energy Transfer Between Quantum Dot
Donors and Dye-Labeled Protein Acceptors. J. Am. Chem. Soc. 2004, 126, 301–310.
44. Fisher, B.R.; Eisler, H-J.; Stott, N.E. and Bawendi, M.G. Emission Intensity Dependence and Single-Exponential Behavior In Single Colloidal Quantum Dot Fluorescence Lifetimes. J. Phys. Chem. B 2004, 108, 143–148.
45. Medintz, I. L.; Trammell, S. A.; Mattoussi, H. and Mauro, J. M. Reversible Modulation of Quantum Dot Photoluminescence Using a Protein- Bound Photochromic Fluorescence Resonance Energy Transfer Acceptor. J. Am. Chem. Soc. 2004, 126, 30–31.
46. Willard, D.M. and Van Orden, A. Quantum dots: Resonant energy-transfer sensor. Nat. Mater. 2004, 2, 575–576.
47. Jiechao Ge, et al. A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications. 2014, 5, 4596.
48. Moon, H. K.; Lee, S. H.; Choi, H. C. In Vivo Near-Infrared Mediated Tumor Destruction by Photothermal Effect of Carbon Nanotubes. ACS Nano 2009, 3, 3707–3713.
49. Kang, B.; Yu, D. C.; Dai, Y. D.; Chang, S. Q.; Chen, D.; Ding, Y. T. Cancer-Cell Targeting and Photoacoustic Therapy Using Carbon Nanotubes as “Bomb” Agents. Small 2009, 5, 1292–1301.
50. Liu, X.; Yu, L. M.; Liu, F.; Sheng, L. M.; An, K.; Chen, H. X.; Zhao, X. L. Preparation of Ag-Fe-Decorated Single-Walled Carbon Nanotubes by Arc Discharge and Their Antibacterial Effect. J. Mater. Sci. 2012, 47, 6086–6094.
51. Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23, 8670–8673.
52. Markovic, Z. M.; Harhaji-Trajkovic, L. M.; Todorovic-Markovic, B. M.; Kepic, D. P.; Arsikin, K. M.; Jovanovic, S. P.; Pantovic, A. C.; Dramicanin, M. D.;
Trajkovic, V. S. In Vitro Comparison of the Photothermal Anticancer Activity of Graphene Nanoparticles and Carbon Nanotubes. Biomaterials 2011, 32, 1121–1129.
53. Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls against Bacteria. ACS Nano 2010, 4, 5731–5736.
54. R. A. Revia, M.Q. Zhang. Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Materials Today. 2016, 19, 157-168.
55. Stephen, Z. R.; Kievit, F. M. and Zhang, M. Magnetite Nanoparticles for Medical MR Imaging. Mater. Today 2011, 14 (7–8) 330.
56. Gossuin, Y. Gillis, P. Hocq, A. Vuong, Q. L. Roch, A. Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip. Rev. 2009, 1 (3) 299.
57. Krishnan, K. M. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy. IEEE Trans. Magn. 2010, 46 (7) 36.
58. Song, S. E. Seo, B. K. Cho, K. R. Woo, H. Son, G. S. Kim, C. Cho, S. B. Kwon, S. S. Computer-aided detection (CAD) system for breast MRI in assessment of local tumor extent, nodal status, and multifocality of invasive breast cancers: preliminary study. Cancer Imaging 2015, 15 (1) 1.
59. Thurber, G. M. Figueiredo, J. L. Weissleder, R. Detection Limits of Intraoperative Near Infrared Imaging for Tumor Resection. Oncol. 2010, 102 (7) 758.
Chapter 2
1. W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc., 1958, 80, 1339.
2. P. Avouris and C. Dimitrakopoulos, Weighing Acetonitrile Against Water as Dispersing Media for Fabrication of Graphene Oxide Films via Electrophoretic Deposition. Mater. Today, 2012, 15, 86–97.
3. A. M. Pinto, I. C. Gonçalves and F. D. Magalh˜aes, Graphene-based materials biocompatibility: a review. Colloids Surf., B, 2013, 111, 188–202.
4. Q. Mu, G. Su, L. Li, B. O. Gilbertson, L. H. Yu, Q. Zhang, Y.-P. Sun and B. Yan, Size-dependent cell uptake of protein-coated graphene oxide nanosheets. ACS Appl. Mater. Interfaces, 2012, 4, 2259–2266.
5. N. T. Brun, V. M. Bricelj, T. H. MacRae and N. W. Ross, Heat shock protein responses in thermally stressed bay scallops, Argopecten irradians, and sea scallops. J. Exp. Mar. Biol. Ecol., 2008, 358, 151–162.
6. S. Takayama, J. C. Reed and S. Homma, Heat-shock proteins as regulators of apoptosis. Oncogene, 2003, 22, 9041–9047.
7. J. W. Fisher, S. Sarkar, C. F. Buchanan, C. S. Szot, J. Whitney, H. C. Hatcher, S. V. Torti, C. G. Rylander and M. N. Rylander, Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res., 2010, 70, 9855–9864.
8. R. Cicchetti, M. Divizia, F. Valentini and G. Argentin, Effects of single-wall carbon nanotubes in human cells of the oral cavity: Geno-cytotoxic risk. Toxicol. In Vitro, 2011, 25, 1811–1819.
9. J. Davies and D. Davies, Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev., 2010, 74, 417–433.
10. G. Gollavelli and Y.-C. Ling, Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials, 2012, 33, 2532– 2545.
11. M. C. Wu, A. R. Deokar, J.-H. Liao, P.-Y. Shih and Y.-C. Ling, Graphene-based photothermal agent for rapid and effective killing of bacteria. ACS Nano, 2013, 7, 1281–1290.
12. Y. Li, H. Dong, Y. Li and D. Shi, Graphene-based nanovehicles for photodynamic medical therapy. Int. J. Nanomed., 2015, 10, 2451–2459.
13. P. C. Ray, S. A. Khan, A. K. Singh, D. Senapati and Z. Fan, Nanomaterials for targeted detection and photothermal killing of bacteria. Chem. Soc. Rev., 2012, 41, 3193–3209.
14. T. Hironobu, N. Takuro, N. Ayuko, N. Yasuro and Y. Sunao, Photothermal reshaping of gold nanorods prevents further cell death. Nanotechnology, 2006, 17, 4431–4435.
15. Y. Horiguchi, K. Honda, Y. Kato, N. Nakashima and Y. Niidome, Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces. Langmuir, 2008, 24, 12026–12031.
16. C. Ungureanu, R. Kroes, W. Petersen, T. A. M. Groothuis, F. Ungureanu, H. Janssen, F. W. B. van Leeuwen, R. P. H. Kooyman, S. Manohar and T. G. van Leeuwen, Light Interactions with Gold Nanorods and Cells: Implications for Photothermal Nanotherapeutics. Nano Lett., 2011, 11, 1887–1894.
17. C. M. Aguirre, C. E. Moran, J. F. Young and N. J. Halas, Laser-Induced Reshaping of Metallodielectric Nanoshells under Femtosecond and Nanosecond Plasmon Resonant Illumination. J. Phys. Chem. B, 2004, 108, 7040–7045.
18. B. Hu, N. Wang, L. Han, M.-L. Chen and J.-H. Wang, Magnetic Nanohybrids Loaded with Bimetal Core–Shell–Shell Nanorods for Bacteria Capture, Separation, and Near-Infrared Photothermal Treatment. Chem.– Eur. J., 2015, 21, 6582–6589.
19. S. Link, C. Burda, M. B. Mohamed, B. Nikoobakht and M. A. El-Sayed, Laser Photothermal Melting and Fragmentation of Gold Nanorods: Energy and Laser Pulse-Width Dependence. J. Phys. Chem. A, 1999, 103, 1165–1170.
Chapter 3
1. T. Efferth, A. Benakis, M.R. Romero, M. Tomicic, R. Rauh, D. Steinbach, R. Hafer, T. Stamminger, F. Oesch, B. Kaina, M. Marschall, Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron. Free Radic. Biol. Med. 2004, 37, 998-1009.
2. S. Krishna, L. Bustamante, R.K. Haynes, H.M. Staines, Artemisinins: their growing importance in medicine. Trends Pharmacol. Sci. 2008, 29, 520-527.
3. P.M. O'Neill, V.E. Barton, S.A. Ward, The molecular mechanism of action of artemisininethe debate continues. Molecules 2010, 15, 1705-1721.
4. A.C. Beekman, P.K. Wierenga, H.J. Woerdenbag, W. Van Uden, N. Pras, A.W. Konings, F.S. el-Feraly, A.M. Galal, H.V. Wikstrom, Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Planta Med. 1998, 64, 615-619.
5. G.H. Posner, C.H. Oh, D. Wang, L. Gerena, W.K. Milhous, S.R. Meshnick, W. Asawamahasadka, Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J. Med. Chem. 1994, 37, 1256-1258.
6. Liu, L; Wei, Y; Shaodong Zhai, S; Chen, Q; Xing, D. Dihydroartemisinin and transferrin dual-dressed nano-graphene oxide for a pH-triggered chemotherapy. Biomaterials 2015, 62, 35-46.
7. R.K. Haynes, W.C. Chan, C.M. Lung, A.C. Uhlemann, U. Eckstein, D. Taramelli, S. Parapini, D. Monti, S. Krishna, The Fe2þ-mediated decomposition, PfATP6 binding, and antimalarial activities of artemisone and other artemisinins: the unlikelihood of C-centered radicals as bioactive intermediates. Chem- Med Chem. 2007, 2, 1480-1497.
8. T. Efferth, Molecular pharmacology and pharmacogenomics of artemisinin and its derivatives in cancer cells. Curr. Drug Targets 2006, 7, 407-421.
9. A.E. Mercer, J.L. Maggs, X.M. Sun, G.M. Cohen, J. Chadwick, P.M. O'Neill, B.K. Park, Evidence for the involvement of carbon-centered radicals in the induction of apoptotic cell death by artemisinin compounds. J. Biol. Chem. 2007, 282, 9372-9382.
10. W. S. Hummers and R. E. Offeman, Preparation of Graphitic Oxide. J. Am. Chem. Soc., 1958, 80, 1339.
11. M. C. Wu, A. R. Deokar, J.-H. Liao, P.-Y. Shih and Y.-C. Ling. Graphene-Based Photothermal Agent for Rapid and Effective Killing of Bacteria. ACS Nano, 2013, 7, 1281–1290.
12. M. Sinha, G. Gollavelli and Y-C Ling. Exploring the photothermal hot spots of graphene in the first and second biological window to inactivate cancer cells and pathogens. RSC Adv., 2016, 6, 63859-63866
13. Z. Liu, A.C. Fan, K. Rakhra, S. Sherlock, A. Goodwin, X. Chen, Q. Yang, D.W. Felsher, H. Dai, Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy, Angew. Chem. Int. Ed. Engl. 2009, 48, 7668-7672.
14. A.F. Moreira, V.M. Gaspar, E.C. Costa, D.D. Melo-Diogo, P. Machado, C.M. Paquete, I.J. Correia, Preparation of end-capped pH-sensitive mesoporous silica nanocarriers for on-demand drug delivery, Eur. J. Pharm. Biopharm. 2014, 88, 1012-1025.
15. G.X. Liu, G.Q. Fang, W. Xu, Dual targeting biomimetic liposomes for Paclitaxel/ DNA combination cancer treatment, Int. J. Mol. Sci. 2014, 15, 15287-15303.
16. W. Zhang, Z. Guo, D. Huang, Z. Liu, X. Guo, H. Zhong, Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials 2011, 32, 8555-8561.
17. L. Zhang, J. Xia, Q. Zhao, L. Liu, Z. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010, 6, 537-544.
18. X. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H. Dai, Nanographene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1 203-212.
19. Z.M. Markovic, L.M. Harhaji-Trajkovic, B.M. Todorovic-Markovic, D.P. Kepic, K.M. Arsikin, S.P. Jovanovic, A.C. Pantovic, M.D. Dramicanin, V.S. Trajkovic, In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials 2011, 32, 1121-1129.
20. Z. Xu, S. Zhu, M. Wang, Y. Li, P. Shi, X. Huang, Delivery of paclitaxel using PEGylated graphene oxide as a nanocarrier. ACS Appl. Mater. Interfaces 2015, 7, 1355-1363.
21. X. Zhao, L. Yang, X. Li, X. Jia, L. Liu, J. Zeng, J. Guo, P. Liu, Functionalized graphene oxide nanoparticles for cancer cell-specific delivery of antitumor drug. Bioconjug. Chem. 2015, 26, 128-136.
22. E. Song, W. Han, C. Li, D. Cheng, L. Li, L. Liu, G. Zhu, Y. Song, W. Tan, Hyaluronic acid-decorated graphene oxide nanohybrids as nanocarriers for targeted and pH-responsive anticancer drug delivery. ACS Appl. Mater. Interfaces 2014, 6, 11882-11890.
23. V.C. Sanchez, A. Jachak, R.H. Hurt, A.B. Kane, Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 2012, 25, 15-34.
24. G. Gollavelli and Y-C. Ling. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials. 2014, 35, 4499-4507.
Chapter 4
1. Legrini, O.; Oliveros, E.; Braun, A. M. Photochemical processes for water treatment. Chem. Rev. 1993, 93, 671−698.
2. Mills, A.; Davies, R. H.; Worsley, D. Water purification by semiconductor photocatalysis. Chem. Soc. Rev. 1993, 22, 417−425.
3. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Environmental Applications of Semiconductor Photocatalysis. Chem. ReV. 1995, 95, 69.
4. Linsebigler, A. L.; Lu, G.; Yates, J. T., Jr. Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. Chem. ReV. 1995, 95, 735.
5. Tang, J.; Zou, Z.; Ye, Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation. J. Angew. Chem., Int. Ed. 2004, 43, 4463.
6. Chatterjee, D.; Dasgupta, S. Visible light induced photocatalytic degradation of organic pollutants. J. Photochem. Photobiol., C 2005, 6, 186.
7. Kim, H. G.; Hwang, D. W.; Lee, J. S. An Undoped, Single-Phase Oxide Photocatalyst Working under Visible Light. J. Am. Chem. Soc. 2004, 126, 8912.
8. Choudary, B. M.; Mahendar, K.; Kantam, M. L.; Ranganath, K. V. S.; Athar, T. The One-Pot Wittig Reaction: A Facile Synthesis of α,β-Unsaturated Esters and Nitriles by Using Nanocrystalline Magnesium Oxide. Adv. Synth. Catal. 2006, 348, 1977−1985.
9. Dewangan, K.; Sinha, N. N.; Chavan, P. G.; Sharma, P. K.; Pandey, A. C.; More, M. A.; Joag, D. S.; Munichandraiah, N.; Gajbhiye, N. S. Synthesis and characterization of self-assembled nanofiberbundles of V2O5: their electrochemical and field emission properties. Nanoscale 2012, 4, 645−651.
10. Wu, M. C.; Lee, C. S. Field emission of vertically aligned V2O5 nanowires on an ITO surface prepared with gaseous transport. J. Solid State Chem. 2009, 182, 2285−2289.
11. Zhang, J.; Xiong, Z.; Zhao, X. S. Graphene-metal−oxide composites for the degradation of dyes under visible light irradiation. J. Mater. Chem. 2011, 21, 3634−3640.
12. Hu, C.; Lu, T.; Chen, F.; Zhang, R. A brief review of graphene− metal oxide composites synthesis and applications in photocatalysis. J. Chin. Adv. Mater. Soc. 2013, 1, 21−39.
13. Shanmugam, M.; Alsalme, A.; Alghamdi, A.; Jayavel, R. Photocatalytic properties of Graphene-SnO2-PMMA nanocomposite in the degradation of methylene blue dye under direct sunlight irradiation. Mater. Express 2015, 5, 319−326.
14. Stengl, V.; Bakardjieva, S.; Grygar, T. M.; Bludska, J.; Kormunda, M. TiO2-graphene oxide nanocomposite as advanced photocatalytic materials. Chem Cent. J. 2013, 7, 1−12.
15. Liu, X.; Pan, L.; Zhao, Q.; Lv, T.; Zhu, G.; Chen, T.; Lu, T.; Sun, Z.; Sun, C. UV-assisted photocatalytic synthesis of ZnO−reduced graphene oxide composites with enhanced photocatalytic activity in reduction of Cr(VI). Chem Eng. J. 2012, 183, 238−243.
16. Tan, L. L.; Ong, W. J.; Chai, S. P.; Mohamed, A. R. Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 2013, 8, 1−9.
17. Chang, H.; Wu, H. Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ. Sci. 2013, 6, 3483−3507.
18. Qiu, B.; Zhou, Y.; Ma, Y.; Yang, X.; Sheng, W.; Xing, M.; Zhang, J. Facile synthesis of the Ti3(+) self-doped TiO2-graphene nanosheets composites with enhanced photocatalysis. Sci. Rep. 2015, 5, 1−5.
19. Kraft A. Electrochemical Water Disinfection: A Short Review. Platinum Met. Rev. 2008, 52, 177–185.
20. Shanmugam, M; Alsalme, A; Alghamdi, A and Jayavel, R. Enhanced Photocatalytic Performance of the Graphene‑V2O5 Nanocomposite in the Degradation of Methylene Blue Dye under Direct Sunlight. ACS Appl. Mater. Interfaces 2015, 7, 14905−14911.
21. Liu, H; Kuila, T; Kim, N. H; Kud, B-C and Lee, J. H. In situ synthesis of the reduced graphene oxide–Polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A, 2013, 1, 3739-3746.
22. You-ji, L and Wei, C. Photocatalytic degradation of Rhodamine B using nanocrystalline TiO2–zeolite surface composite catalysts: effects of photocatalytic condition on degradation efficiency. Catal. Sci. Technol., 2011, 1, 802–809.
23. Wilhelm, P and Stephan, D. Photodegradation of rhodamine B in aqueous solution via SiO2@TiO2 nano-spheres. J. of Photochem and Photobio A: Chemistry. 2007, 185 19–25.
24. Wu, J-M. Photodegradation of Rhodamine B in Water Assisted by Titania Nanorod Thin Films Subjected to Various Thermal Treatments. Environ. Sci. Technol. 2007, 41, 1723-1728.
25. Wang, Q; Lian, J; Ma, Q; Bai, Y; Tong, J; Zhong, J; Wang, R; Huang, H and Sua, B. Photodegradation of Rhodamine B over a novel
photocatalyst of feather keratin decorated CdS under visible light irradiation. New J. Chem., 2015, 39, 7112.
26. Wang, Z; Chen, C; Wu, F; Zou, B; Zhao, M; Wang, J; Feng, C. Photodegradation of rhodamine B under visible light by bimetal codoped TiO2 nanocrystals. J. of Haz. Mat. 2009, 164, 615–620.
27. Raj, A. D; Pazhanivel, T; Kumar, P. S; Mangalaraj, D; Nataraj, N; Ponpandian, N. Self assembled V2O5 nanorods for gas sensors. Current Applied Physics. 2010, 10, 531–537.