簡易檢索 / 詳目顯示

研究生: 胡耀中
Hu, Yao-Chung
論文名稱: High performance MIM capacitor with bi-layer high-k dielectric structure
應用雙層高介電材料的結構製作高效能金屬-絕緣體-金屬電容
指導教授: 巫勇賢
Wu, Yung-Hsien
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 66
中文關鍵詞: 金屬-絕緣體-金屬高介電
外文關鍵詞: MIM, High-K
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據2009年的半導體設計藍圖(ITRS),應用於射頻積體電路上的金屬—絕緣體—金屬(metal-insulator-metal, MIM)電容,在2016年就會碰上技術上的困難,因此必須提早研究可行的解決方案。因此近年來,高介電常數材料被不斷的研究使MIM電容具有更大的電容密度及較小的漏電流密度,然而應對於未來需求更高的電容密度要求,將高介電常數的材質結晶化來得到更高的介電常數是很有可能的,但卻很少人研究如何降低結晶所需要的溫度來符合後段製程所需,另外也很少人探討如何避免結晶化後造成的漏電流問題。所以我們實驗分兩部分,第一部分,使用摻雜的方式降低二氧化鋯(ZrO2)所需的結晶溫度,另外透過另一層非晶層降低漏電流;實驗第二部分,應用更高介電常數的材質配合高電子能障的介電層來實現高效能電容。
    在實驗第一部份中我們利用兩層ZrO2中間摻雜鍺(Ge),當Ge擴散進入ZrO2會降低ZrO2所需要的結晶溫度,因此四方晶形態(tetragonal phae)的ZrO2在低溫500℃下達成,經過我們的實驗發現,其介電常數高達36.46,電容密度高達27.83 fF/μm2,而等效氧化層厚度(EOT)為1.2 nm,然而結晶後所造成的漏電非常高,-2 V時高達6.94x10-5 A/cm2,並且電容的二次電壓係數(quadratic voltage coefficient of capacitance, α)高達81129 ppm/V2,此α值越高代表電容越不穩定,而在上方覆蓋上一層非晶型的ZrO2(摻雜8%的La2O3)當作漏電阻擋層,成功的將原本-2 V時高達6.94x10-5 A/cm2的漏電流降低至9.97x10-7 A/cm2 ,並且大幅加強電容穩定度α值從81129 ppm/V2改善成3135 ppm/V2,然而不可避免的電容密度稍微下降至19.5 fF/μm2。另外擁有非晶型的ZrO2(摻雜8%的La2O3)當作漏電阻擋層的試片其漏電流機制符合蕭基發射(Schottky emission)代表我們若是使用更高功函數金屬,應該可以降低漏電流。
    在實驗第二部份我們使用更高介電常數的材質二氧化鈦(TiO2),配合高電子能障的三氧化二釔(Y2O3)來當作漏電阻擋層,我們發現單純使用TiO2當作介電層可以得到極高的電容密度,在經過400℃或500℃熱處理的試片分別為37.13 fF/μm2與53.74 fF/μm2,但是漏電流也是非常大,在-1V分別為1.6x10-4 (A/cm2)與0.12 (A/cm2),符合我們對TiO2的印象,高介電常數與低電子能障。再我們為TiO2添加漏電阻擋層Y2O3後,我們成功的將漏電流壓低到8x10-9 (A/cm2)與4x10-9 (A/cm2),而500℃的漏電流較低是因為高溫下更多的氧與氮進入介電層修補介電層中的缺陷,另外電容密度高達28.64 fF/μm2與32.21 fF/μm2,最後電容穩定性α值也不錯分別為3787 ppm/V2與3490 ppm/V2。這種優異表現使雙層結構的TiO2/Y2O3 MIM電容非常適合應用於各種電路元件設計上面。


    總目錄 摘要.................................I 誌謝.................................III 總目錄...............................IV 表目錄...............................VI 圖目錄...............................VII 第一章 緒論..........................................1 1-1 背景介紹..........................................1 1-2 MIM電容的結構與特性...............................2 1-3 MIM電容的應用.....................................3 1-4 研究動機..........................................4 1-5 論文結構..........................................4 第二章 實驗流程.....................................13 2-1 實驗規畫.........................................13 2-2 Ni/ZrO2/Ge/ZrO2/TaN/Ta電容製程...................13 2-3 Pt/TiO2/Y2O3/TaN/Ta電容製程......................14 2-4 電容電性分析.....................................15 第三章 以ZrO2/Ge/ZrO2堆疊式介電層作高密度MIM電容....24 3-1 介電層結晶與低溫結晶探討.........................24 3-2 堆疊式電容電性表現...............................25 第四章 以TiO2和Y2O3介電層達成低漏電和高密度MIM電容..39 4-1 為何選用TiO2與Y2O3作為MIM電容的介電層............39 4-2 無Y2O3漏電阻擋層的電性分析.......................40 4-3 使用Y2O3結合TiO2的電性探討.......................40 4-4 使用雙層結構(TiO2/Y2O3)與單層結構(TiO2)的電性比較......................................................42 第五章 結論.........................................57 參考文獻................................................59   表目錄 第一章 表1-1各種高介電常數材料的基本電性........................6 表1-2 2009 ITRS堆疊式動態隨機存取記憶體設計藍圖..........7 表1-3各種金屬材料功函數..................................8 表1-4 2009 ITRS射頻電路上被動元件技術設計藍圖............9 第三章 表3-1 摻雜元素對不同結晶態的鏈結能影響..................29 表3-2 試片ZGZ_500與LZ_ZGZ_500特性比較...................30 第四章 表4-1單層結構TiO2與雙層結構TiO2/Y2O3的比較表........43 圖目錄 圖1-1金屬氧化物半導體場效電晶體立體截面圖...............10 圖1-2各種材料相對於Si的bandgap與數值....................10 圖1-3 MIS與MIM電容構造圖................................11 圖1-4各種不同結構的MIM電容圖............................12 圖2-1 Ni/ZrO2/Ge/ZrO2/TaN/Ta電容實驗流程與步驟..........18 圖2-2 Pt/La2O3-ZrO2/ZrO2/Ge/ZrO2/Pt實驗流程與步驟.......20 圖2-3 Pt/TiO2/Y2O3/TaN/Ta實驗流程與步驟.................23 圖3-1 ZrO2的溫度壓力相圖................................31 圖3-2不同ZrO2的結晶結構圖...............................32 圖3-3試片ZGZ_500的X光繞射光譜圖.........................33 圖3-4試片LZ_ZGZ_500的X光繞射光譜圖......................33 圖3-5試片ZGZ_500與LZ_ZGZ_500在量測頻率1M Hz電容密度對電壓特性圖....................................................34 圖3-6試片ZGZ_500與LZ_ZGZ_500在電壓2V到-2V的漏電流特性圖.34 圖3-7 MIM電容(Ni/ZrO2/Ge/ZrO2/TaN)與(Pt/La2O3-ZrO2/ZrO2/Ge/ZrO2/Pt)的能帶比較圖.......................35 圖3-8試片ZGZ_500與LZ_ZGZ_500的ln(J)與E1/2作圖...........36 圖3-9試片ZGZ_500與LZ_ZGZ_500在量測頻率1M Hz下ΔC/C0的比較圖......................................................37 圖3-10試片(a) ZGZ_500與 (b) LZ_ZGZ_50在量測頻率1M Hz、100K Hz與10K Hz下ΔC/C0的比較圖..............................38 圖4-1各種高介電常數材料相對矽的能帶圖...................44 圖4-2各種介電層氧化物其能隙寬與介電質的關係圖...........44 圖4-3 TiO2經過400℃與500℃處理的電容密度對電壓圖........45 圖4-4 TiO2經過400℃與500℃處理造成的漏電流密度隨電壓的變化情況圖....................................................45 圖4-5 TiO2經過400℃與500℃處理處理所造成的電容值偏移量圖......................................................46 圖4-6 (a) Pt/TiO2/Tan/Ta (b) Pt/TiO2/Y2O3/Tan/Ta 的電容能帶圖......................................................47 圖4-7試片TY090經過400℃與500℃處理所呈現出的不同電容密度圖......................................................48 圖4-8試片TY090 (a)經過400℃熱處理的試片在量測溫度25℃與125℃下的漏電流現(b) 經過500℃熱處理的試片在量測溫度25℃與125℃下的漏電流表現圖..........................................49 圖4-9試片TY090經過500℃與400℃的處理的I-V hysteresis圖..50 圖4-10試片TY090 (a)400℃與500℃處理的試片在溫度25℃下量測的漏電流特性圖(b)25℃下400℃與500℃處理的試片ln(J)對E1/2的特性圖......................................................51 圖4-11三種漏電機制對漏電流密度的影響程度圖(a)在27 ℃(b)在127 ℃..................................................52 圖4-12試片TY090 (a)400℃熱處理試片分別在25℃、75℃、125℃下量測(b) 500℃熱處理試片分別在25℃、75℃、125℃下量測的ln(J)對E1/2的特性圖。........................................53 圖4-13試片TY090 (a)熱處理400℃與500℃試片,在高溫下的α值比較圖(b)經過熱處理500℃的試片,對比文獻中不同材料所呈現的電容密度與α值比較圖........................................54 圖4-14(a)單層結構TiO2與堆疊型結構TiO2/Y2O3在500℃熱處理後,不同的電容密度比較圖(b) 單層結構TiO2與堆疊型結構TiO2/Y2O3在500℃熱處理後的漏電流表現圖.............................55 圖4-15單層結構TiO2與堆疊型結構TiO2/Y2O3在500℃熱處理後的電容穩定性表現圖............................................56

    第一章
    [1.1] J. Robertson, "Electronic structure and band offset in High k oxides, " International workshop on gate insulator, " pp. 76, 2001.
    [1.2] "International technology roadmap for semiconductors, " ITRS, 2009 edition.
    [1.3] M. Lukosius, C. Wenger, S. Pasko, H. Mussig, B. Seitzinger, and C. Lohe, "Atomic vapor deposition of titanium nitride as metal electrodes for gate-last CMOS and MIM devices," Chemical Vapor Deposition, vol. 14, 2008.
    [1.4] C. Kang, H. Cho, Y. Kim, R. Choi, K. Onishi, A. Shahriar, and J. Lee, "Characterization of resistivity and work function of sputtered-TaN film for gate electrode applications," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 21, p. 2026, 2003.
    [1.5] C. Perkins, B. Triplett, P. McIntyre, K. Saraswat, S. Haukka, and M. Tuominen, "Electrical and materials properties of ZrO2 gate dielectrics grown by atomic layer chemical vapor deposition," Applied Physics Letters, vol. 78, p. 2357, 2001.
    [1.6] B.Razavi, RF Microelectronics, Pretice Hall, 1998. ISBN 0-13-887571-5.
    [1.7] M.K. Bera, C.K. Maiti, "Electrical properties of SiO2/TiO2 high-k gate dielectric stack," Materials Science in Semiconductor Processing, vol. 9, pp. 909–917, 2006
    [1.8] R. Aparicio and A. Hajimiri, "Capacity limits and matching properties of integrated capacitors," IEEE Journal of Solid-State Circuits, vol. 37, pp. 384-393, 2002.
    [1.9] W. C. Wang, M. Badylevich, V. V. Afanas’ev, A. Stesmans1, C. Adelmann, S. Elshocht, J. A. Kittl, M. Lukosius, Ch. Walczyk and Ch. Wenger, "Injection and trapping of electrons in Y2O3 layers on Si," European Materials Research Society, vol. 8, pp. 012028, 2010.

    [1.10] D. Tsoutsou, G. Apostolopoulos, S. F. Galata, P. Tsipas, A. Sotiropoulos, G.
    Mavrou, Y. Panayiotatos, A. Dimoulas, A. Lagoyannis, A. G. Karydas, "Stable of very high-k tetragonal phase in Ge-doped ZrO2 films by atomic oxygen beam deposition," Journal of applied physics, vol. 106, pp. 024107, 2009.

    第二章
    [2.1] C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T. Arikado, and S. P. McAlister,S. " Improvement of the performance of TiHfO MIM capacitors by using a dual plasma treatment of the lower electrode," IEEE Electron Device Letters, vol. 29, pp. 1105-1107, 2008.
    [2.2] Hang Hu, Chunxiang Zhu, Xiongfei Yu, Albert Chin, M. F. Li, Byung Jin Cho, Dim-Lee Kwong, P. D. Foo, Ming Bin Yu, Xinye Liu, and Jerry Winkler " MIM capacitors using atomic-layer-deposited high-k (HfO2)1-x(Al2O3)x dielectrics," IEEE Electron Device Letters, vol. 24, pp. 60-62, 2003.
    第三章
    [3.1] P. Bouvier, E. Djurado, G. Lucazeau, and T. Le Bihan, " High-pressure structural evolution of undoped tetragonal nanocrystalline zirconia," Physical Review B, vol. 62, pp. 8731-8737, 2000.
    [3.2] X. Zhao and D. Vanderbilt, "Phonons and lattice dielectric properties of zirconia," Physical Review B, vol. 65, 07105, 2002.
    [3.3] Choong-Ki Lee, Eunae Cho, Hyo-Sug Lee, Cheol Seong Hwang, and Seungwu Han, "First-principles study on doping and phase stability of HfO2," Physical Review B, vol. 78, pp. 012102, 2008.
    [3.4] Thoria A. Baeraky, " Microwave measurements of the complex permittivity of zirconia at high temperatures," Egyptian Journal of Solids, vol. 27, pp. 25-34, 2004.
    [3.5] K. Dieter, and Schrooder, Semiconductor material and device characterization , Wiley inter science, 2006. ISBN 0-471-73906-5
    [3.6] G. Pabst, L. Martin, Y. Chu, and R. Ramesh, "Leakage mechanisms in BiFeO thin films," Applied Physics Letters, vol. 90, p. 072902, 2007.
    [3.7] C. Chaneliere, J. Autran, R. Devine, and B. Balland, "Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications," Materials Science & Engineering R, vol. 22, pp. 269-322, 1998.
    [3.8] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, p. 1785, 2000.
    [3.9] J. Babcock, S. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, "Analog characteristics of metal-insulator-metal capacitors using PECVD nitride dielectrics," IEEE Electron Device Letters, vol. 22, pp. 230-232, 2001.
    [3.10] H. Hu, C. Zhu, Y. Lu, M. Li, B. Cho, and W. Choi, "A high performance MIM capacitor using HfO2 dielectrics," IEEE Electron Device Letters, vol. 23, pp. 514-516, 2002.
    [3.11] H. Hu, C. Zhu, Y. Lu, Y. Wu, T. Liew, M. Li, B. Cho, W. Choi, and N. Yakovlev, "Physical and electrical characterization of HfO metal–insulator–metal capacitors for Si analog circuit applications," Journal of Applied Physics, vol. 94, p. 551, 2003.
    [3.12] P. Gonon and C. Vall, "Modeling of nonlinearities in the capacitance-voltage characteristics of high-k metal-insulator-metal capacitors," Applied Physics Letters, vol. 90, pp. 142906, 2007.
    [3.13] J. Macdonald, "Theory of ac space-charge polarization effects in photoconductors, semiconductors, and electrolTYes," Physical Review, vol. 92, pp. 4-17, 1953.
    [3.14] J. Beaumont and P. Jacobs, "Polarization in potassium chloride crystals," J. Phys. Chem. Solids, vol. 28, 1967.
    [3.15] S. Mitoff and R. Charles, "Electrode polarization of ionic conductors," Journal of Applied Physics, vol. 43, p. 927, 1972.
    [3.16] C. Zhu, H. Hu, X. Yu, S. Kim, A. Chin, M. Li, B. Cho, and D. Kwong, "Voltage and temperature dependence of capacitance of high-k HfO2 MIM capacitors: a unified understanding and prediction," Dig. - Int. Electron Devices Meet. pp. 36.5, 2003.

    第四章
    [4.1] R. Asahi, Y. Taga, W. Mannstadt, and A. Freeman, "Electronic and optical properties of anatase TiO2," Physical Review B, vol. 61, pp. 7459-7465, 2000.
    [4.2] P. Alexandrov, J. Koprinarova, and D. Todorov, "Dielectric properties of TiO2-films reactively sputtered from Ti in an RF magnetron," Vacuum, vol. 47, pp. 1333-1336, 1996.
    [4.3] B. Hudec, K. Husekova, E. Dobrocka, T. Lalinsky, J. Aarik, A. Aidla, and K. Frohlich, “High-permittivity metal-insulator-metal capacitors with TiO2 rutile dielectric and RuO2 bottom electrode,” E-MRS meeting, Vol. 8, pp. 012024, 2010
    [4.4] M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, "Ultra-thin titanium oxide film with a rutile-type structure," Applied Surface Science, vol. 207, pp. 13-19, 2003.
    [4.5] Y. Lee, K. Chan, and M. Brady, "Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 13, pp. 596, 1995.
    [4.6] J. Yan, D. C.Glimer, S. A. Campbell, W. L. Gladfelter, and P. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambient,” J. Vac. Sci. Technol. B, Vol. 14, Issue 3, pp. 1706-1711, 1996.
    [4.7] C. H. Cheng, S. H. Lin, K. Y. Jhou, W. J. Chen, C. P. Chou, F. S. Yeh, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and Albert Chin, " High density and low leakage current in TiO2 MIM capacitors processed at 300 ◦C," IEEE Electron Device Letters, vol. 29, pp. 845-847, 2008.
    [4.8] J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 18, p. 1785, 2000.
    [4.9] E. Ramakrishnan, K. Cornett, G. Shapiro, and W. Howng, " Dielectric properties of radio frequency magnetron sputter deposited zirconium titanate based thin films," Journal of The Electrochemical Society, vol. 145, p. 358, 1998.
    [4.10] N. K. Park, D. K. Kang, B. H. Kim, S. J. Jo, J. S. Ha, " Electrical properties of La2O3 thin films grown on TiN/Si substrates via atomic layer deposition," Applied Surface Science, vol. 252, pp. 8506-8509, 2006.
    [4.11] Y. Zhao, K. Kita, K. Kyuno, and A. Toriumi, "Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators," Applied Physics Letters, vol. 94, pp. 042901, 2009.
    [4.12] Y. Zhao, M. Toyama, K. Kita, K. Kyuno, and Akira Toriumi, "Moisture absorption induced permittivity deterioration and surface roughness enhancement of lanthanum oxide films on silicon," Applied Physics Letters, vol. 88, pp. 072904, 2006.
    [4.13] C. X. Li and P. T. Lai, " Wide-bandgap high-k Y2O3 as passivating interlayer for enhancing the electrical properties and high-field reliability of n-Ge metal-oxide-semiconductor capacitors with high-k HfTiO gate dielectric," Applied Physics Letters, vol. 95, pp. 022910, 2009.
    [4.14] J. L. G. Fierro and L. Gonzalez Tejuca, “Microstructural evolution and optical properties of doped TiO2 films prepared by RF magnetron sputtering," Ceramics International, vol. 32, pp. 121-125, 2006
    [4.15] C. C. Wang, Y. K. Chiou, C. H. Chang, J. Y. Tseng, L. J. Wu, C. Y. Chen, and T. B. Wu, " Memory characteristics of Au nanocrystals embedded in metal oxide semiconductor structure by using atomic-layer-deposited Al2O3 as control oxide," Journal of Physics D: Applied Physics, vol. 40, pp. 1673, 2007.
    [4.16] C. H. Cheng, H. C. Pan, H. J. Yang, C. N. Hsiao, C. P. Chou, S. P. McAlister, and Albert Chin, " Improved high temperature leakage in high density MIM capacitors by using a TiLaO dielectric and an Ir electrode," IEEE Electron Device Letters, vol. 28, pp. 1095-1097, 2007.
    [4.17] N. Vu, T. K. Anh, L. Q. Minha, and C. Barthou, " Preparation and structure of nanophosphors materials Y2O3 doped with rare earth ions Er," International Workshop on Photonics and Applications, pp. 89-93, 2004.
    [4.18] T. Remmel, R. Ramprasad, and J. Walls, "Leakage behavior and reliability assessment of tantalum oxide dielectric MIM capacitors," 41st Annual International Reliability Physics Symposium, Dallas, Texas, pp. 277-281.
    [4.19] R. Ramprasad, "Phenomenological theory to model leakage currents in metal-insulator-metal capacitor systems," phys. stat. sol., vol. 239, pp. 59-70, 2003.
    [4.20] D. Brassard, L. Ouellet, and M. A. El Khakani, " Room temperature deposited titanium silicate thin films for MIM capacitor applications," IEEE Electron Device Letters, vol. 28, pp. 261-263, 2007.
    [4.21] V. Mikhelashvili, P. Thangadurai, W. D. Kaplan, and G. Eisenstein, " High capacitance density metal-insulator-metal structures based on a high-k HfNxOy–SiO2–HfTiOy laminate stack," Applied Physics Letters, vol. 92, pp. 132902, 2007.
    [4.22] V. Mikhelashvili, G. Eisenstein, and A. Lahav " High capacitance density metal-insulator-metal structure based on Al2O3–HfTiO nanolaminate stacks," Applied Physics Letters, vol. 90, pp. 013506, 2007.
    [4.23] S. J. Ding, H. Hu, H. F. Lim, S. J. Kim, X. F. Yu, C. Zhu, M. F. Li, B. J. Cho, D. S. H. Chan, S. C. Rustagi, M. B. Yu, A. Chin, " High performance MIMcapacitor using ALD high HfO2 Al2O3 laminate Dielectrics," IEEE Electron Device Letters, vol. 24, pp. 730-732, 2003.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE