簡易檢索 / 詳目顯示

研究生: 李傳斌
Lee, Chuan-Pin
論文名稱: 合成地下水與海水中硒銫在粉碎花崗岩及泥岩的收附與擴散行為
Sorption and Diffusion of Selenium and Cesium on Crushed Granite and Mudrock in Synthetic Groundwater and Seawater
指導教授: 許俊男
Hsu, Chun-Nan
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 95
中文關鍵詞: 高放射性廢棄物深地層處置花崗岩泥岩收附擴散
外文關鍵詞: high-level radioactive waste, deep geologic disposal, selenium, cesium, granite, mudrock, reducing groundwater and seawater, glove box, sorption, diffusion
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對硒和銫在台灣本土的潛在母岩,於好氧及厭氧條件下的吸附及擴散行為,作一個比較深入的研究和探討,包括花崗岩與泥岩。由於在高放射性廢棄物處置場的設計中,以深地層概念及多重障壁圍阻的處置方式是目前一致公認為最可行的方法,因此本實驗除了針對屬於天然障壁的台灣花崗岩與泥岩,進行好氧與厭氧批次動力收附吸附實驗之外,另外還進行好氧與厭氧條件下的管柱擴散實驗,以探討未來高放射性廢棄物處置場,在地下水或海水入侵時,使放射性核種釋出後在地質圈的傳輸行為研究。
    由實驗結果可看出,花崗岩與泥岩對於硒和銫的吸附能力有所差異。不管是在好氧或厭氧條件下,泥岩對個別硒和銫的收附能力均優於花崗岩,主要是在泥岩中含有豐富的黏土礦物與鐵氧化物。此外,在混合硒和銫的動態收附研究中,明顯發現泥岩或花崗岩對銫的收附平衡反應較快,與單一銫的結果相同。然而,在混合硒和銫的結果卻發現,不管是在好氧或厭氧條件下,硒的收附平衡反應變慢,且在厭氧條件下,即使經歷90天仍無法觀察到收附平衡的情形。
    由好氧及厭氧的管柱實驗可知,由於在厭氧條件下受溫度的影響,擴散係數比在好氧條件下稍高。另外,在地下水中管柱內因產生碳酸鈣沈澱,因而降低各核種(氚水、硒和銫)的擴散係數。而由批次實驗中的結果可發現,泥岩對硒和銫的收附能力高於花崗岩。由管柱實驗的結果也可看到,泥岩對硒和銫的遲滯因數也比花崗岩大。
    最後,比較批次與管柱實驗結果。在厭氧條件下,由地下水中花崗岩的擴散實驗,卻得到與批次實驗相反的結果,由此而更可確定除了固體介質對核種的收附行為有影響之外,也必包含了其他的影響因素,如緊縮度與曲撓度等。因此,希望能以本研究成果,作為台灣本地的處置場場址評估工作上的一項參考,並且奠定今後針對天然障壁作進一步研究的基礎。


    Sorption and diffusion behaviours of selenium (Se) and cesium (Cs) on Taiwan host rock including granite and mudrock under aerobic and anaerobic conditions were
    performed in this study. The attention of this study was paid on sorption and diffusion experiments under both conditions as the multi-barrier concept in deep geological
    disposal has been considered to be the most feasible way to construct a high-level radioactive waste (HLW) repository, where whole rocks and crushed rocks were taken as natural barriers. The reducing groundwater (GW) or seawater (SW) prepared in glove box were used in batch kinetic tests and column diffusion experiments under both conditions to reflect the extreme situation of highly reducing groundwater or seawater underground 300 m or more that might intrude into HLW repositories and release toxic radioactivity to the environment.
    There is an obvious difference between granite and mudrock in sorption behaviors of Se and Cs under both conditions. Sorption of individual Se and Cs in mudrock is higher than that in granite due to high mineral contents of clay and iron oxides. Moreover, fast equilibrium reaction in sorption of Cs by coexisting Se and Cs tests was similar to individual Cs tests according to experimental results. However, equilibrium reactions in sorption of Se by coexisting Se and Cs under both conditions turned into slower and slower and it didn’t reach even in 90 days under anaerobic conditions.
    The diffusion results showed that higher apparent diffusion coefficients (Da) under anaerobic conditions were observed due to higher temperature in glove box. However, Da of HTO, Cs and Se in GW decreased because of CaCO3 precipitation in column. A higher retardation factor (Rf) value of mudrock in column diffusion experiments is in agreement with the results of batch sorption tests.
    According to experimental results of column and batch tests, it showed a difference in anaerobic results of granite in GW. In addition to sorption effects, diffusion of Se and Cs depends on the microporous structure of tested media, such as constrictivity and tortuosity. The results from this study provide a reference for performance assessment of HLW repository and for further studies of natural barriers.

    目 錄 中文摘要 英文摘要 致謝 目錄 表目錄 圖目錄 第一章 緒論 1-1背景 1-2文獻回顧 1-3研究目的 1-4論文架構 第二章 理論 2-1深地層處置-厭氧環境 2-2岩石礦物的吸附模式 2-3 岩石礦物的擴散理論 第三章 實驗方法 3-1 固相分析 3-1-1 岩樣的來源 3-1-2 化學試藥 3-1-3 儀器設備 3-1-4 分析項目 3-2 批次實驗 3-2-1 化學試藥 3-2-2 儀器設備 3-2-3 實驗材料 3-2-4 厭氧手套箱穩定實驗 3-2-5 好氧厭氧動態收附實驗 3-3 好氧厭氧管柱擴散實驗 3-2-1 實驗材料 3-2-2 實驗方法 第四章 結果與討論 4-1 固相分析 4-1-1 岩樣基本特性分析 4-1-2 岩樣比表面積特性分析 4-1-3 岩樣礦物特性及組成成分分析 4-1-4 岩樣緩衝能力特性分析 4-2 好氧厭氧批次實驗 4-2-1厭氧手套箱穩定實驗 4-2-2動態收附實驗 4-2-2-1單一核種 4-2-2-2混合Cs&Se 4-3 好氧厭氧管柱擴散實驗 4-3-1 建立厭氧管柱實驗及水飽和 4-3-2 非反應性好氧厭氧管柱實驗-氚水 4-3-2-1泥岩 4-3-2-2花崗岩 4-3-2-3好氧與厭氧實驗結果比較 4-3-3 反應性好氧厭氧管柱實驗-硒及銫 4-3-3-1 銫 Cs 4-3-3-2 硒 Se 4-4 批次與管柱結果的比較 第五章 結論 第六章 建議 參考文獻 著作及參與研討會

    1. 張仲民,普通土壤學,國立編譯館,台北(1988)。
    2. 陳正宏,台灣之火成岩,經濟部中央地質調查所,台北(1990)。
    3. 王明光譯,土壤環境化學,國立編譯館,台北(1991)。
    4. 莊文星,台灣之火山活動與火成岩,國立自然科學博物館,台中(1992)。
    5. 李境和,「放射性核種於裂縫岩層傳輸中非平衡吸附反應影響之研究,」國立清華大學核子工程研究所,博士論文(1992)
    6. 許俊男,「在模擬地下水中沸石和高嶺土對鍶銫核種的吸附機制研究,」國立清華大學原子科學系,行政院國家科學委員會專題研究計畫成果報告(1996)。
    7. 張顧齡,「酸鹼度和溫度對鍶銫在膨潤土中吸附與擴散行為之影響,」國立清華大學原子科學系研究所,碩士論文(1997)。
    8. 劉靜蓉,「鍶銫在潛在母岩與水泥工程障壁中吸附與擴散的基礎研究,」國立清華大學原子科學系研究所,碩士論文(1999)。
    9. 黎華嵊,「銫在粉碎花崗岩與低鹽度人造地下水中傳輸之研究,」國立清華大學原子科學系研究所,碩士論文(2000)。
    10. 陳子雲,「放射性廢料處置主要核種之遷移,」清華大學原子科學系研究所,碩士論文(2001)。
    11. 郭殷銘,「銫在粉碎花崗岩中宿命與傳輸模式之建立,」國立清華大學原子科學系研究所,碩士論文(2002)。
    12. 李俞鋆,「硒銫在花崗岩上地下水中的吸附與擴散行為,」國立清華大學原子科學系研究所,碩士論文(2004)。
    13. 藍培倫「硒銫在粉碎泥岩的吸附與擴散行為,」國立清華大學原子科學系研究所,碩士論文(2006)。
    14. Alloway, B.I., Heavy Metals In Soils, pp.237-238 (1990).
    15. ASTM, 2001. “Standard test method for distribution ratios by the short-term batch method.” The American Society for Testing and Materials, D4319-83.
    16. Beauwens, T., Canniere, P. D., Moors, H., Wang L., Maes, N., 2005. “Studying the migration behaviour of selenate in Boom Clay by electromigration.” Engineering Geology 77, 285–293.
    17. Breen, C, 1997, “In Situ 133Cs and 1H solution-phase NMR, thermoanalytical and x-ray diffraction studies of the adsorption of polyalkyleneglycol on Texas bentonite.” Colloids and Surface, 132, 17
    18. Bruggeman, C., Vancluysen, J., A. Maes., 2002, “New selenium solution speciation method by ion chromatography + gamma counting and its application to FeS2-controlled reducing conditions.” Radiochimica Acta, 90, 629–635.
    19. Bruggeman, C., Maes, A., Vancluysen, J., Vandemussele, P. 2005. “Selenite reduction in Boom clay: Effect of FeS2, clay minerals and dissolved organic matter.” Environmental Pollution,137, 209– 221
    20. Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K.G., Chorover, J., 2002. “Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation.” Environ. Sci. Technol.,36, 2670-2676
    21. Cheng, H.P., Li, M.H., Li, S., 2003. “A sensibility analysis of model selection in modeling the reactive transport of cesium in crushed granite.” Journal of Contaminant Hydrology, 61, 371–385.
    22. Lee, C. H., Teng, S. P.,1993. “A dual period diffusion model for measuring diffusion parameters.” Waste Management.,13, 15-24
    23. Crank, J., The Mathematics of Diffusion, Oxford University Press, London (1975).
    24. Cui, D. and Eriksen, T., 1997. “On the sorption of Co and Cs on Stripa granite fracture-filling materiall.” Radiochimica Acta, 79, 29-35.
    25. Cui, D. and Eriksen, T.,1998. “Reactive transport of Sr, Cs and Tc through a column packed with fracture-filling material.” Radiochimica Acta, 82, 287-292.
    26. Descostes, M., Blin, V., Bazer-Bachi, F. , Meier, P., Grenut, B., Radwan, J. ,Schlegel, M.L., Buschaert, S. , Coelho, D. , Tevissen, E., 2008. “Diffusion of anionic species in Callovo-Oxfordian argillites and Oxfordian limestones. (Meuse/Haute–Marne, France)” Applied Geochemistry, 23, 655–677.
    27. Elrashidi, M. A., Adriano, D. C., Workman, S.M., Lindsay, W. L., 1997. “Chemical equilibria of selenium in soils: a theoretical development.” Soil Sci., 144(2), 141.
    28. Foster, A.L., Brown Jr., G.E., Parks, G.A., 2003. “X-ray absorption fine structure study of As(V) and Se(+IV) sorption complexes on hydrous Mn oxides.” Geochimica et Cosmochimica Acta, 67 (11), 1937–1953.
    29. Choppin,G., Jan-Olov, L., Jan, R., Radiochemistry and Nuclear Chemistry, 3rd ed., Woburn, MA : Butterworth-Heinemann (2002).
    30. Hurel, C., Marmier, N., Seby, F., Giffaut, E., Bourg, A. C. M., 2002. Fromage, F., “Sorption behaviour of caesium on a bentonite sample.” Radiochimica Acta, 90, 695-698.
    31. Japan Nuclear Cycle Development Institute (JNC), 2000. “H-12 project.” JNC Tech. Rep. JNC TN1410 2000-001.
    32. Hayes, K.F., Roe, A.L., Brown, G.E., Hodgson, K.O., Leckie, J.O., Parks, G.A., 1987. “In situ x-ray absorption study of surface complexes: selenium oxyanions on FeOOH.” Science, 238, 783–786.
    33. Hayes, K.F., Papelis, C., Leckie, J.O., 1988. “Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces.” J. Colloid Interface Sci., 125, 717–726.
    34. Li, Y., Gregory, S., 1974. “Diffusion of ions in sea water and in deep-sea sediments.” Geochimica and Cosmochimica Acta, 38, 703–714.
    35. Melkior, T., Yahiaouia, S., Motelliera, S., Thobya, D., Tevisse,n E. 2005. “Cesium sorption and diffusion in Bure mudrock samples.” Applied Clay Science, 29,172– 186.
    36. Melkior, T. , Yahiaoui S., Thoby, D., Motellier, S., Barthes, V., 2007, “Diffusion coefficients of alkaline cations in Bure mudrock.” Physics and Chemistry of the Earth, 32, 453–462.
    37. Molera, M., Eriksen, T., Jansson, M., 2003. “Anion diffusion pathways in bentonite clay compacted to different dry densities.” Applied Clay Science, 23, 69– 76
    38. Myriam, D. ,Gregory, L. ,Michel, F.,Janine, J., Rouchaud, J.C. , Fanny, M., Jacques, D.,Slobodan, M., 2003. “Sorption of selenium anoxic species on apatites and iron oxides from aqueous solutions.” Journal of Environmental Radioactivity, 70, 61–72.
    39. Neal, R.H., Sposito, G., Holtzclaw, K.M, Traina, S.J., 1987. “Selenite adsorption on alluvial soils:I. Soil composition effects.” Soil Sci. Soc. Am. J., 51, 1161.
    40. Poinssot, C., Baeyens, B., Bradbury, M. H., 1999. “Experimental and modelling studies of caesium sorption on illite.” Geochim. Cosmochim. Acta, 63, 3217
    41. Payne, T. E., Harries, J. R., 2000. “Adsorption of Cs and U(VI) on soils of the Australian arid zone.” Radiochimica Acta, 88, 799.
    42. Sato, H., Miyamoto, S., 2004. “Diffusion behaviour of selenite and hydroselenide in compacted bentonite.” Applied Clay Science, 26, 47– 55.
    43. Sawhney, B.L.,1972. “Selective sorption and fixation of cations by clay minerals: a review.” Clays Clay Miner., 20, 93-100
    44. Su, C., Suarez, D.L., 2000. “Selenate and selenite sorption on iron oxides: an infrared and electrophoretic study.” Soil. Sci. Soc. Am. J., 64, 101–111
    45. Takamitsu I., Shinya M., Haruo S. 2008. “Effect of sodium nitrate on the diffusion of Cl and I in compacted bentonite.” Journal of Nuclear Science and Technology, 45, 610–616.
    46. Torstenfelt, B., Anderson, K., Allard, B.,1982. “Sorption of strontium and cesium on rocks and minerals.” Chem. Geol, 36, 123
    47. Wang, J.H., Robinson, C.V., Edelmans, I.S., 1953. “Self-diffusion and structure of liquid water. III. Measurement of self-diffusion of liquid water with 2H, 3H and 18O as tracers.” Journal of American Chemistry Society, 75, 466–470.
    48. Wersin, P., Soler, J.M. , Van Loon, L., Eikenberg, J. , Baeyens, B. , Grolimund, D., Gimmi, T. , Dewonck, S., 2008. “Diffusion of HTO, Br, I, Cs, Sr and Co in a clay formation: Results and modeling from an in situ experiment in Opalinus Clay.” Applied Geochemistry, 23, 678–691
    49. William, J., Groundwater Geochemistry-Fundamentals and Applications to Contamination, Lewis Publishers, New York, p.209 (1997)
    50. Wold, S., Eriksen, T.E., 2003. “Diffusion of lignosulfonate colloids in compacted bentonite.” Applied Clay Science, 23, 43– 50
    51. Yamaguchi, T., Nakayama, S., Nagao, S., Kizaki, M., 2007. “Diffusive transport of neptunium and plutonium through compacted sand-bentonite mixtures under anaerobic conditions.” Radiochim. Acta, 95, 115–125.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE