研究生: |
巫玠廷 Jie-Ting Wu |
---|---|
論文名稱: |
奈米銅導線的研究 The Study of Copper Nano-wires |
指導教授: |
葉鳳生
Fon-Shan Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 71 |
中文關鍵詞: | 銅 、電子束微影 、奈米線 、金屬光罩 |
外文關鍵詞: | copper, electron beam lithography, nanowire, metal mask |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在於研究奈米銅導線的製作及量測方式,利用電子束微影的技術在非晶矽上定義出我們想要成長的銅線及電極位置,再利用置換方法,鍍製成銅奈米線,然後測量電性。
首先使用碳六十來修飾電子阻劑,以劑量5~14.75μC/cm2對線寬40nm、60nm、80nm、100nm的獨立線曝光,顯影時間為60秒、90秒與150秒,碳六十的含量為0.015%、0.025%與0.035%。我們發現在顯影時間150秒,碳六十重量百分濃度為0.015%時,最小可以定義出90nm的線寬。在置換方法方面,置換條件為硫酸銅3g/L搭配HF 70c.c./L 置換10秒、HF 70c.c./L 置換7秒與60c.c./L的HF 置換7秒時,找到條件為60c.c./L的HF 置換7秒,得到寬93nm,厚62nm的奈米銅線。而電性量測上,用兩種方式去比較,在第一種方式中,於銅線一端濺鍍厚4000埃的銅電極pad,然後以此樣品在導電式原子力顯微鏡(C-AFM)下做電性測量,此法因接觸電阻不一,測量上有誤差。在第二種結構上,電極使用金屬光罩配合濺鍍產生,可直接使用四點探針於探針系統上量測,以避免接觸電阻問題,兩種方法再進一步比較其優劣點。
The purpose of this study was the fabrication and electrical measurement of copper nanowires. The patterns of copper nanowires were defined by electron beam lithography on amorphous-silicon. Then copper nanowires formed by replacement method in mixture solution of cupric sulfate (CuSO4•5H2O) with HF. After the fabrication of copper nanowire, we measured the electrical characteristic.
At first, the C60 mix with electron beam resist DSE1010 to make up the nanocomposite resist. The patterns were exposed with 40nm, 60nm, 80nm and 100nm iso-line with dose 5~14.75 μC/cm2. Then development time with 60s, 90s and 150s and concentration of C60 in nanocomposite resist with 0.015%, 0.025% and 0.035% were used to modify the exposure results. Then we found the concentration of C60 with 0.015% and development time 150s could fine define line width about 90nm. Among different concentration of HF in replacement solution and replacement time, which are 70c.c./L with 10s, 70c.c./L with 7s and 60c.c./L with 7s, the 60c.c/L with 7s gave the proper copper nanowire with width 92nm and thickness 62nm. There were two kinds of electrical measurement methods used. First kind was measured on Conductive mode of Atomic Force Microscopic(C-AFM). After the copper nanowires were fabricated by replacement method, copper film with thickness 4000Å was sputtered on one end. Then we got the I-V curve by used C-AFM. The second one was used probe station with HP4156A to measure the electrical characteristic. After the copper nanowires were fabricated, the metal mask was used to define the electrode pad during the copper film sputtered on it. The four point measurement method was used on probe station to avoid the contact resistance. Then, these two different methods were discussed to compare the advantages and disadvantages at the end.
[1] Yu Huang, “Directed Assembly of One-Dimensional Nanostructures into Functional Networks”, Science., Vol. 291, pp.630-633, No.26, 2002.
[2] Tomonori AKAI, “Fabrication process of fine electrodes using shadow mask evaporation and tip-induce local oxidation”, Jpn. J. Appl. Phys. Vol. 41, pp.4883-4886, No.7B, 2002.
[3] E. M. Toimil Molares, “Electrical characterization of electrochemically grown single copper nanowires” , Applied Physics Letters, vol.81, pp.2139-2141, 2003.
[4] R. Lin, “Microcantilever equipped with nanowire template electrodes for mutiprobe measurement on fragile nanostructures”, Journal of Applied Physics, Vol. 96, pp.2895-2900,No. 5, 2004.
[5] 冉景涵 “Integration of Cu Seed Layer and Electroplating Deposition for ULSI”, 國立清華大學電子工程研究所碩士論文, 2000 , MRS Spring Meeting (2001) San Francisco, USA
[6] 王宣凱 “ Novel Seed Layer for Cu Metallization”, 國立清華大學電子工程研究所碩士論文, 2001.
[7] 張宏達 “ The fabrication of Cu nanowires”, 國立清華大學電子工程研究所碩士論文, 2003.
[8] Guo-Zhung Hong, “The Study on Copper Nanowire”, IEDMs, C.1.4, pp.55-58, 2004, Taiwan.
[9] 朱育宏 “Study of Thermal Flow Processes and Deep Sub-micron of Metal Salicided Gate Processes by Electron Beam Lithograpy”, 國立清華大學電子工程研究所碩士論文, 2003
[10] A. Schiltz, J. F. Terpan, S. Brun, and P. J. Pantiez, Microelec. Eng., Vol.30, P.283 ,1996
[11] Nonogaki, S., Ueno, T., and Ito, T., Microlithography Fundamentals in Semiconductor Devices and Fabrication Technology, Marcel Dekker, New York, P.202, 1998.
[12] C. H. Lin, S. D. Tzu, and Anthony Yen. Microelec. Eng., 46, P.58, 1999
[13] A. N. Broers, in Proc. Of 1st Internat’l Conf. On Electron and Ion Beam Science and Technology, edited by R. Bakish ,Wiley, New York, , p.191, 1964.
[14] A. N Broers, W. W. Molzen, J. J. Cuomo, and N. D. Wittels, Appl. Phys. Lett. 29, p.596 ,1997.
[15] I. Ishhi, H. Nozawa and T. Tamamura, Appl. Phys. Lett., 70, pp.1110, 1997.
[16] Lee, H. D. Wang, “A Cu seed layer for Cu deposition on silicon”, Solid-State Electronics, Vol. 41, No. 5, 1997, p. 695
[17] DIETER K. SCHRODER, “Semiconductor Material and Device Characterization”