簡易檢索 / 詳目顯示

研究生: 李孟竹
Li, Meng Chu
論文名稱: 以耗散粒子動力學模擬雙成分奈米顆粒與雙嵌段高分子複合材料於剪切流場下之形態轉換研究
Dissipative Particle Dynamics Simulations on the Shear-Induced Morphological Transitions of Binary Nanoparticles within Diblock Copolymers Composite
指導教授: 張榮語
Chang, Rong Yeu
口試委員: 朱一民
吳建興
黃招財
曾煥錩
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 83
中文關鍵詞: 耗散粒子動力學高分子奈米複合材料自組裝行為剪切流場形態結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係利用耗散粒子動力學模擬,進行研究雙奈米顆粒於雙嵌高分子複合材料中,親性雙奈米顆粒之體積分率對雙嵌段隨流場之形態轉換與奈米顆粒聚集所造成的效應。研究於對稱型雙嵌段高分子中各別添加親性奈米顆粒,體積分率為0.5%、1%、2%、3%、4%,且不同剪切速率下觀察與統計其高分子形態與奈米顆粒聚集情形。另外將親A的奈米顆粒接枝視為大顆奈米顆粒,觀察其影響。
    研究結果發現,其自組裝結構會受到流速、奈米顆粒濃度和奈米顆粒聚集情況影響。隨著流速增加,使嵌段高分子鏈段被拉伸,使層板結構轉變。相較流速,奈米顆粒濃度的增加對高分子鏈段拉伸的影響較小。奈米顆粒濃度的改變主要影響著奈米顆粒的聚集情形,隨著奈米顆粒濃度增加,奈米顆粒聚集程度是上升的。奈米顆粒濃度和聚集程度會共同影響系統的熵值,進而影響系統的結構轉變。
    將雙成分奈米顆粒其中親A的奈米顆粒變更為大顆奈米顆粒時,從結構相態觀察,由密度分佈圖大顆奈米顆粒較易集中於A層中間,使得A層的末端距離減小,出現網狀結構。當奈米濃度增加,大顆奈米顆粒易集中於A層中間和彼此吸引,造成聚集程度是上升,而將層板結構破壞,而產生穿孔層板的情形。


    In this thesis, the impact of the binary nanoparticle volume fraction and shear-induced diffusion on the morphology transition of binary nanoparticles within symmetric diblock copolymers composite is investigated via the experiments done by dissipative particle dynamics simulation. The morphology of two different size of A-affinity nanoparticle is also analyzed under various condition combinations of the nanoparticle volume fraction and shear rate of those simulation systems.
    The results show that the self-assembly of nanoparticle mixtures in polymer matrix is a cooperative assembly that is affected by various factors. The tensile properties of diblock copolymer increase with increasing shear rate activating the morphology transition. On the contrary, the tensile properties of diblock copolymer are not related to the nanoparticle volume fraction, but nanoparticle aggregation. It shows that with increasing nanoparticle volume fraction aggregation increases. These results suggest that both volume fraction and aggregation effect translational entropy which contributes to the morphology transition.
    As the size of A-affinity nanoparticle increasing, the larger particles concentrate in the center of the domain which makes the end-to-end distance of A chain segment decrease with net structure. On the other hand, a phase transition from the lamellar to perforated layer (PLs) phase can be obtained by increasing nanoparticle volume fraction .

    摘要 I Abstract II 目錄 IV 第一章 序論 1 1.1 前言 1 1.2 複合材料 3 1.3 研究動機與目的 4 第二章 文獻回顧 5 2.1 耗散粒子動力學模擬文獻回顧 5 2.2 剪切流場文獻回顧 7 2.3 雙嵌段高分子與奈米顆粒共混文獻回顧 11 2.4 雙成分奈米粒子共混文獻回顧 16 第三章 研究方法 19 3.1 耗散粒子動力學基本理論架構 19 3.1.1 耗散粒子動力學基本假設與模擬流程 20 3.1.2 運動方程式的數值方法 23 3.1.3 週期性邊界與最小鏡像法 23 3.2 耗散粒子動力學作用力場 27 3.2.1 粒子間作用力 27 3.2.2 粒子內作用力 29 3.3 耗散粒子動力學參數定義方法 30 3.4 非平衡耗散粒子動力學模擬方法 34 SLLOD演算法 35 3.5 Lees-Edwards週期性邊界與最小鏡像法 36 3.6 系統性質統計 39 第四章 模擬系統架構驗證 41 4.1 耗散粒子動力學單顆粒子系統 41 4.2 耗散粒子動力學雙嵌段共聚物系統 42 4.3 具剪切流場之雙嵌段高分子驗證 46 第五章 結果與討論 48 5.1 雙嵌段高分子/雙奈米顆粒於剪切流場下系統介紹 48 5.2 雙嵌段高分子/雙奈米顆粒於剪切流場下形態討論 52 5.2.1 小尺寸奈米顆粒 52 5.2.2 大尺寸奈米顆粒 59 第六章 結論與未來展望 67 參考文獻 69

    [1]馬振基, 奈米材料科技原理與應用. 全華出版社, P1-10(2003)
    [2] Chansuna M, Chansuna N, Pimpha V, Vao-soongnern. Mesoscale simulation and experimental studies of self-assembly behavior of a PLA-PEG-PLA triblock copolymer micelle for sustained drug delivery. Journal of polymer research 21.6 (2014):1.
    [3] Nie S Y, Nie Y, Sun W J, Lin W S, Wu X D, Guo Yu, Qian L J, Zhang. Dissipative Particle Dynamics Studies of Doxorubicin-Loaded Micelles Assembled from Four-Arm Star Triblock Polymers 4AS-PCL-b-PDEAEMA-b-PPEGMA and their pH-Release Mechanism. The journal of physical chemistry. B 117.43 (2013):13688-13697.
    [4] Corbierre M K, Corbierre N S, Cameron M, Sutton K, Laaziri R B, Lennox. Gold Nanoparticle/Polymer Nanocomposites: Dispersion of Nanoparticles as a Function of Capping Agent Molecular Weight and Grafting Density. Langmuir 21.13 (2005):6063-6072.
    [5] 林裕祥, 奈米粒子於奈米複合材料中之分散機制.國立中央大學化學工程與材料工程研究所碩士學位論文, 2011
    [6] 郭政柏、黃承鈞,高分子混成材料的發展與應用. 工業材料雜誌, 331, p.103-120,2014
    [7] Yiannourakou M, Yiannourakou B, Rousseau N, Pannacci B, Herzhaft. Rheological behavior of aqueous polyacrylamide solutions determined by dissipative particle dynamics and comparison to experiments. Europhysics letters 97.3 (2012):34007.
    [8] Lísal M, Lísal J K, Brennan. Alignment of Lamellar Diblock Copolymer Phases under Shear: Insight from Dissipative Particle Dynamics Simulations. Langmuir 23.9 (2007):4809-4818.
    [9] Mackay M E, Tuteja A, Duxbury P M, Hawker C J, Van Horn B, Guan Z, Chen G, Krishnan R S. General strategies for nanoparticle dispersion. Science 311.5768 (2006):1740-3.
    [10] He L, He Z, Pan L, Zhang H, Liang. Microphase transitions of block copolymer/nanorod composites under shear flow. Soft matter 7.3 (2011):1147-1160.
    [11] Hoogerbrugge P. J., Hoogerbrugge, Koelman. Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics letters 19.3 (1992):155-160.
    [12] Espanol, P. and P. Warren. Statistical Mechanics of Dissipative Particle Dynamics. Europhysics letters 1995;30(4):191-196.
    [13] Groot R.D.and P. Warren. Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. The Journal of chemical physics 1997;107(11):4423.
    [14] Robert D. Groot and Timothy J. Madden, Dynamic simulation of diblock copolymer microphase separation. The Journal of chemical physics 1998;108(20):8713.
    [15] Lísal, M. and John K. Brennan. Alignment of Lamellar Diblock Copolymer Phases under Shear: Insight from Dissipative Particle Dynamics Simulations. Langmuir 23.9 (2007):4809-4818.
    [16] P. Petrus, M. Lísal, J.K. Brennan. Self-Assembly of Lamellar- and Cylinder-Forming Diblock Copolymers in Planar Slits: Insight from Dissipative Particle Dynamics Simulations. Langmuir 26.18 (2010):14680-14693.
    [17] Arash Nikoubashman , Richard A. Register , and Athanassios Z. Panagiotopoulos. Sequential Domain Realignment Driven by Conformational Asymmetry in Block Copolymer Thin Films. Macromolecules 47.3 (2014):1193-1198.
    [18] J.J. Chiu, B.J. Kim, E.J. Kramer, D.J. Pine . Control of Nanoparticle Location in Block Copolymers. Journal of the American Chemical Society 2005;127(14):5036-5037.
    [19] L. He, L. Zhang, H. Liang. The Effects of Nanoparticles on the Lamellar Phase Separation of Diblock Copolymers. The journal of physical chemistry. B 112.14 (2008):4194-4203.
    [20] Vibha Kalra, Sergio Mendez, Fernando Escobedo and Yong Lak Joo. Coarse-grained molecular dynamics simulation on the placement of nanoparticles within symmetric diblock copolymers under shear flow. The Journal of chemical physics 128.16 (2008):164909.
    [21] Houyang Chen, Eli Ruckenstein. Nanoparticle aggregation in the presence of a block copolymer. The Journal of chemical physics 131.24 (2009):244904.
    [22] 周華展, 以耗散粒子動力學模擬奈米顆粒與雙嵌段高分子複合材料於剪切流場下之形態轉換研究. 國立清華大學化學工程學研究所碩士論文, 2013.
    [23] Dahuan Liu, Chongli Zhong. Cooperative Self-Assembly of Nanoparticle Mixtures in Lamellar Diblock Copolymers: A Dissipative Particle Dynamics Study. Macromolecular rapid communications 27.6 (2006):458-462.
    [24 ]Houyang Chen, Eli Ruckenstein. Structure and particle aggregation in block copolymer-binary nanoparticle composites. Polymer 2010;51(24):5869-5882.
    [25] I. Prigogine, F. Henin, and C. George, Dissipative Processes Quantum States and Entropy. Proceedings of the National Academy of Sciences of the United states of America, 1968.59(1): p. 7-&
    [26] B.L. Holian, W.G. Hoover, B. Moran, and G. K. Straub
    Shock-wave structure via nonequilibrium molecular dynamics and Navier-Stokes continuum mechanics. Physical review. A, General physics 1980;22(6):2798-2808.
    [27] Evans D.J. and Morris G.P. 1990. Statistical Mechanics of Nonequilibrium Liquids, New York: Academic Press.
    [28] A .W. Lees and S.F. Edwards. The computer study of transport processes under extreme conditions. Journal of physics. C. Solid state physics 1972;5(15):1921-1928.
    [29] 紀皓暐, 利用耗散粒子動力學模擬帶電荷三嵌段共聚物於水溶液中之自組裝行為. 國立清華大學化學工程學研究所碩士論文, 2013.
    [30] Agus Haryono and Wolfgang H. Binder. Controlled Arrangement of Nanoparticle Arrays in Block-Copolymer Domains. Small 2006;2(5):600-611.
    [ 31] Chieh-Tsung Lo, Yu-Cheng Chang, Shih-Chi Wu and Chien-Liang Lee. Effect of particle size on the phase behavior of block copolymer/nanoparticle composites. Colloids and surfaces. A, Physicochemical and engineering aspects 2010;368(1), 6-12.
    [32] Jianhua Huang, Mengbo Luo and Yongmei Wang. Dissipative Particle Dynamics Simulation on a Ternary System with Nanoparticles, Double-Hydrophilic Block Copolymers, and Solvent. The journal of physical chemistry. B 2008;112(22):6735-6741.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE