簡易檢索 / 詳目顯示

研究生: 陳宏維
Chen, Hung-Wei
論文名稱: 改善P型高壓橫向式擴散金氧半場效電晶體大型陣列元件的自我靜電放電防護能力
Improving the ESD Self-Protection Capability of HV p-Channel LDMOS Large Array Device
指導教授: 張彌彰
Chang, Mi-Chang
口試委員: 連振炘
Lien, Chen-Hsin
徐永珍
Hsu, Yung-Jane
莊紹勳
Chung, Steve S.
郭治群
Guo, Jyh-Chyurn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 128
中文關鍵詞: 靜電放電P型高壓橫向式擴散金氧半場效電晶體大型陣列元件自我靜電放電防護能力
外文關鍵詞: ESD, HV p-Channel LDMOS, Large Array Device, ESD Self-Protection Capability
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多的應用諸如電源管理IC、顯示驅動IC、LED驅動IC、汽車電子和電池的應用皆需要智慧功率IC技術。這些應用中,例如高壓穩壓器,必須維持在高電壓工作,並可能利用低成本及較成熟的製程技術,如0.25微米或0.4微米的製程技術以達到較高的效益。在大多數功率IC中,金氧半場效電晶體(MOSFET)的大型陣列元件(LAD)被用於高電流驅動的輸出級。由於是在輸出級電路,大型陣列元件(LAD)還需要靜電放電(ESD)的自我防護能力。對於LAD的設計而言,必須追求低的導通電阻和較小的晶片面積開銷,難以採用靜電放電(ESD)的佈局設計規則來改善ESD性能。然而,LAD具有相當大的元件尺寸,通常期望能提供本身的靜電放電自我防護能力,而無需外掛額外的靜電放電保護元件。在本論文中,研究了如何改善0.25微米整合式雙極性/互補金氧半元件/擴散式金氧半元件 (Bipolar-CMOS-DMOS,BCD)製程製程技術中的60伏特P型高壓橫向式擴散金氧半場效電晶體大型陣列元件其自我靜電放電防護能力。我們發現原始的60伏特P型高壓橫向式擴散金氧半場效電晶體的大型陣列元件,其自我靜電放電防護能力不佳,不能透過增加元件尺寸來改善其靜電放電自我防護能力。源極工程與汲極工程被用來進行相關之研究,以便找到更有效的解決方案。發現透過在汲極端增加一道額外的P型井(PW)離子佈植,可以建立ESD自我保護能力,並對其對元件特性如安全操作區域(SOA),特徵導通電阻(Ronsp)和崩潰電壓(BVDSS)的影響進行了更詳細的研究,並沒因為增加了ESD的防護能力而犧牲了元件的性能,並對元件佈局和優化提供了指導。關鍵的改善機制也在模擬和實驗中被驗證了。同樣的方法也被證明適用於相同BCD製程技術中的其他高壓元件。因此,本論文提出的汲極工程,是一種低成本並通用的改善方式,P型井(PW)離子佈植。可以被有效的用來改善P型高壓橫向式擴散金氧半場效電晶體大型陣列元件的自我靜電放電防護能力。


    In recent years, smart power IC technologies are needed in many applications, such as power management ICs, display driver ICs, LED driver ICs, automotive electronics and battery applications. Some of these applications, like high voltage regulators, need to sustain high supply voltage, and may take advantage of the lower cost matured technologies such as 0.25μm or 0.4μm processes. In most power ICs, large array devices (LAD) of MOSFETs are used in output stages for high current drive. Electrostatic discharge (ESD) self-protection capability of LAD is also required. For LAD design, due to the chasing of low on-resistance and smaller area overhead, it is hard to employ ESD design rules to improve ESD performance. However, with considerable device size of LAD, LAD is usually expected to provide ESD self-protection capability without adding extra ESD protection device. In this dissertation, the 60V HVPMOS LAD of the 0.25μm BCD process is studied. It was found to have poor ESD protection capability and it could not be improved by increasing the device size. Source and drain engineering approaches were developed to find a more effective solution. It was found that by adding an extra P-type well (PW) implant in the drain side, ESD self-protection capability can be established. More detailed studies on its impact to device characteristics such as SOA, Ronsp and BVDSS are carried out that provide guidelines for device layout and optimization without LAD performance losses. Key improving mechanism is verified in simulations and experiments. The same approach is also shown to be applicable to other HV devices of the BCD process. Thus, it is a low cost general solution to the HVPMOS LAD ESD protection.

    摘要 I ABSTRACT (ENGLISH)Ⅱ ACKNOWLEDGEMENTS Ⅲ TABLE OF CONTENTS Ⅳ LIST OF TABLES Ⅵ LIST OF FIGURES Ⅶ Chapter 1 Introduction 1 1.1 History and Trends of Power Semiconductor Devices 1 1.2 Review of Power MOSFET Technologies 7 1.3 The Motivation of this Work 13 1.4 The Organization of Dissertation 14 Chapter 2 Applications and Layout Consideration of Power MOSFET Large Array Device 15 2.1 Introduction to BCD Technology 15 2.2 Application of Power MOSFET Large Array Device in Integrated Circuits 23 2.3 Layout Consideration of Power MOSFET Large Array Device 33 Chapter 3 Characterization of Power MOSFET Large Array Device 39 3.1 Static Characteristics of Power MOSFET LAD 39 3.2 Dynamic Characteristics of Power MOSFET LAD 44 3.3 Safe Operation Area of Power MOSFET LAD 54 3.3.1 Category of Safe Operation Area (SOA) 54 3.3.2 Electrical SOA (E-SOA) 57 3.3.3 Thermal SOA (E-SOA) 58 3.3.4 Hot-Carrier SOA (HC-SOA) 65 Chapter 4 Improving the ESD Self-Protection Capability of HVPMOS Large Array Device 66 4.1 Background 66 4.1.1 Previous Work of ESD Self-Protection of Large Array Device 66 4.1.2 The advantages of HVPMOS LAD in the Power Applications 67 4.2 Drain engineering and Source Engineering of 60V HVPMOS LAD 68 4.3 Experimental Results of HVPMOS LAD Self-Protection Capability Improvement 76 4.4 Failure Analysis and TCAD Simulation 85 4.5 Summary 92 Chapter 5 ESD Protection of High-Voltage Technologies and Large Array Device 93 5.1 ESD Protection of High-Voltage Technologies 93 5.2 ESD Protection of Power MOSFET Large Array Device 105 Chapter 6 Conclusions and Future Works 118 6.1 Conclusions 118 6.2 Future Works 120 REFERENCES 121 PUBLICATION LIST 128

    [1] B.J. Baliga, Power Semiconductor Devices, ISBN 0-534-94098-6.
    [2] Jain, Alok. Power Electronics and Its Applications. Mumbai: Penram International Publishing. ISBN 81-87972-22-X.
    [3] A. Yoo, “Design, Implementation, Modeling, and Optimization of Next Generation Low-Voltage Power MOSFETs,” Thesis (PhD), University of Toronto, 2010.
    [4] https://en.wikipedia.org/wiki/Power_semiconductor_device
    [5] H. Wang, “Power MOSFETs with Enhanced Electrical Characteristics,” Thesis (PhD), University of Toronto, 2009.
    [6] P. Hower, S. Pendharkar, and T. Efland, “Current status and future trends in silicon power devices,” in IEDM Technical Digest, 2010, pp. 308-311
    [7] A. Q. Huang, N. X. Sun, B. Zhang, X. Zhou, and F.C. Lee, “Low Voltage Power Devices for
    Future VRM,” IEEE ISPSD, 1998, pp. 395-398.
    [8] J. Chen, “HV EDMOS Design with Expansion Regime,” Thesis (MD), University of Toronto, 2013.
    [9] P. Hower and S. Pendharkar, “Short and long term safe operating considerations in LDMOS transistors,” Proc. Int. Symp. Power Semicond. Devices, pp. 545-548, 2005.
    [10] J. Lee, “Design and Optimization of Power MOSFET Output Stage for High-Frequency Integrated DC-DC Converters,” Thesis (MD), University of Toronto, 2012.
    [11] Y. Fu, Z. Li, W. T. Ng, and J. K. O. Sin, Integrated Power Devices and TCAD Simulation, Boca Raton, FL, USA:CRC Press, 2014.
    [12] M. Rose, and H. J. Bergveld, “Integration Trends in Monolithic Power ICs: Application and Technology Challenges,” IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 1965-1974, Sept 2016.
    [13] I.-Y. Park, Y.-K. Choi, K.-Y. Ko, S.-C. Shim, B.-K. Jun, N.-C. Moon, N.-J. Kim, and K.-D. Yoo, “BCD (Bipolar-CMOS-DMOS) technology trends for power management IC,” in Proc. IEEE Int. Conf. Power Electron. & ECCE Asia, 2011, pp. 318–325.
    [14] H. Chang, J.-J. Jang, M.-H. Kim, E.-K. Lee, D.-E. Jang, J.-S. Park, J.-H. Jung, C.-J. Yoon, S.-R. Bae, and C.-H. Park, “Advanced 0.13 μm smart power technology from 7 V to 70 V,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, 2012, pp. 217–220.
    [15] H.-L. Chou, P.-C. Su, J. C. W. Ng, P.-L. Wang, H.-T. Lu, C. J. Lee, W.-J. Syue, S.-Y. Yang, Y.-C. Tseng, C.-C. Cheng, C.-W. Yao, R.-S. Liou, Y.-C. Jong, J. L. Tsai, J. Cai, H.-C. Tuan, C.-F. Huang, J. Gong, “0.18um bcd technology platform with best-in-class 6 v to 70 v power MOSFETs,” International Symposium on Power Semiconductor Devices and ICs (ISPSD), pp. 401-404, June 2012.
    [16] H. Tomita, H. Eguchi, S. Kijima, N. Honda, T. Yamada, H. Yamawaki, H. Aoki, and K. Hamada, “Wide-voltage SOI-BiCDMOS technology for hightemperature automotive applications,” in Proc. IEEE Int. Symp. Power Semicond. Devices ICs, 2011, pp. 28–31.
    [17] F. Udrea, “SOI-based devices and technologies for high voltage ICs,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technol. Meeting, 2007, pp. 74–81.
    [18] Bruno Murari. Smart Power Technology Evolves to Higher Levels of Complexity. [Online]. http://www.datasheetcatalog.org/datasheet/SGSThomsonMicroelectronics/mXxztx.pdf.
    [19] Bruno Murari, Franco Bertotti, and Giovanni A. Vignola, Smart Power ICs: Technologies and Applications, Springer, 1995.
    [20 http://www.tsmc.com/english/dedicatedFoundry/technology/power_ic.htm
    [21] http://www.tsmc.com/english/dedicatedFoundry/technology/bcd.htm
    [22] Seminar by Ing. G. Ricotti (STMicroelectronics): "Evolution of the Smart Power technologies and design techniques toward low power and high density in High Voltage ICs", 19 May 2016
    [23] BCD Smart Power Roadmap. Trends and Challenges. Giuseppe Croce. NEREID WORKSHOP 'Smart Energy'. Bertinoro, October 20th.
    [24] A. Hastings, The Art of Analog Layout, 2nd ed., Upper Saddle River, NJ: Pearson/Prentice Hall, 2006.
    [25] M. Ershov, “Numerical Simulation of Metal Interconnects of Power Semiconductor Devices,” Proc. Inter. Symp. Power Semi. Devices & ICs, pp. 185-188, 2010
    [26] Power MOSFET Electrical Characteristics - TOSHIBA Semiconductor
    https://toshiba.semicon-storage.com/info/docget.jsp?did=13415
    [27] Power MOSFET Basics, AN-1084, International Rectifier Application Notes.r
    www.aosmd.com/res/application.../mosfets/Power_MOSFET_Basics.pdf
    [28] P. Moens and G. V. D. bosch, “Characterization of total safe operating area of lateral DMOS transistors,” IEEE Trans. Device Mater. Rel., vol. 6, no. 3, pp. 349–357, Sep. 2006.
    [29] P. Hower, “Safe operating area—A new frontier in LDMOS design,” in Proc. Int. Symp. Power Semicond. Devices ICs, 2002, pp. 1–8.
    [30] J. Willemen, D. Johnsson, Y. Cao, and M. Stecher, “A TLP-based characterization method for transient gate biasing of MOS devices in high-voltage technologies,” in Proc. EOS/ESD Symp., 2010, pp. 1–10.
    [31] Practical Considerations of Trench MOSFET Stability – Fairchild
    https://www.fairchildsemi.com/application-notes/AN/AN-4161.pdf
    [32] P. Hower, “Safe operating area—A new frontier in LDMOS design,” in Proc. Int. Symp. Power Semicond. Devices ICs, 2002, pp. 1–8.
    [33] S. Pendharkar, R. Higgins, T. Debolske, T. Efland, and B. Nehrer, “Optimization of low voltage n-channel ldmos devices to achieve required electrical and lifetime SOA,” Proc. ISPSD’02, (Sante Fe 2002), pp. 261-264.
    [34] P. Moens, M. Tack, R. Degraeve, and G. Groeseneken, “A novel hot-hole injection degradation model for lateral nDMOS transistors,” IEDM Tech. Digest 2001, pp. 877-880.
    [35] S. Manzini, A. Gallerano, and C. Contiero, “Hot-electron injection and trapping in the gate oxide of submicron DMOS transistors,” Proc. ISPSD’98, (Kyoto 1998), 415-418.
    [36] V.A.Vashchenko, A. Strachan, D. Linten, D. Lafonteese, A. Concannon, M. Scholz, S .Thijs, P. Jansen, P. Hopper, and G. Groeseneken, “Improving the ESD self-protection capability of integrated power NLDMOS arrays,” in Proc. EOS/ESD Symp., 2010, pp. 1–8.
    [37] V.A. Vashchenko and P.J. Hopper, “A new principle for a self-protecting power transistor array design,” in Proc. Int. Symp. Power Semicond. Devices ICs, 2006, pp. 1–4.
    [38] W.-Y. Chen and M.-D. Ker, “New layout arrangement to improve ESD robustness of large-array high-voltage nLDMOS,” IEEE Electron Device Lett., vol. 31, no. 2, pp. 159–161, Feb. 2010.
    [39] W.-Y. Chen and M.-D. Ker, “Improving safe operating area of nLDMOS array with embedded silicon controlled rectifier for ESD protection in a 24-V BCD process,” IEEE Trans. Electron Devices, vol. 58, no. 9, pp. 2944–2951, Sep. 2011.
    [40] J.-H. Lee, H.-D. Su, C.-L. Chan, D. H. Yang, J. F. Chen, and K. M. Wu, “The influence of the layout on the ESD performance of HV-LDMOS,” in Proc. Int. Symp. Power Semicond. Devices ICs, 2010, pp. 303–306.
    [41] M.-D. Ker and W.-J. Chang, “On-chip ESD protection design for automotive vacuum-fluorescent-display (VFD) driver IC to sustain high ESD stress,” IEEE Trans. Device Mater. Rel., vol. 7, no. 3, pp. 438–445, Sep. 2007.
    [42] Wen-Yi Chen, Ming-Dou Ker, “Characterization of SOA in Time Domain and the Improvement Techniques for Using in High-Voltage Integrated Circuits,” IEEE Trans. Device Mater. Rel., vol. 12, no. 2, pp. 2944-2951, Jun. 2012.

    [43] K. Kawamoto, S. Takahashi, S. Fujino, and I. Shirakawa, “A no-snapback LDMOSFET with automotive ESD endurance,” IEEE Trans. Electron Devices, vol. 49, no. 11, pp. 2047–2053, Nov. 2002.
    [44] H. Fan, L. Jiang, and B. Zhang, “A method to prevent strong snapback in LDMOS for ESD protection,” IEEE Trans. Device Mater. Rel., vol. 13, no. 1, pp. 50–53, Mar. 2013.
    [45] P. Hower, J. Lin, S. Pendharkar, B. Hu, J. Arch, J. Smith, and T. Efland, “A rugged LDMOS for LBC5 technology,” in Proc. Int. Symp. Power Semicond. Devices ICs, 2005, pp. 327–330.
    [46] P. Hower and S. Merchant, “Snapback and safe operating area of LDMOS transistors,” in IEDM Tech. Dig., 1999, pp. 193–196.
    [47] P. Hower, J. Lin, S. Merchant, and S. Paiva, “Using adaptive resurf to improve the SOA of LDMOS transistors,” in Proc. Int. Symp. Power Semicond. Devices ICs, 2000, pp. 345–348.
    [48] M. Shrivastava and H. Gossner, “A review on the ESD robustness of drain-extended MOS devices,” IEEE Trans. Device Mater. Rel., vol. 12, no. 4, pp. 615–625, Dec. 2012.
    [49] J. Barth, K. Verhaege, L. Henry, and J. Richner, “TLP calibration, correlation, standards and new techniques,” IEEE Trans. Electron. Packag. Manuf., vol. 24, no. 2, pp. 99–108, Apr. 2001.
    [50] A. Gendron, C. Salamero, M. Bafleur, N. Nolhier, P. Renaud, and P. Besse, “Area-efficient, reduced and no-snapback PNP-based ESD protection in advanced smart power technology,” Proc. EOS/ESD Symp 2006, pp. 69–76.
    [51] V.A. Vashchenko, D.J. LaFonteese, and K.G. Korablev, “Lateral PNP BJT ESD protection devices,” Proc. IEEE Bipolar/BiCMOS Circuits Technology Meeting 2008, pp. 53–56.
    [52] P. Renaud, A. Gendron, M. Bafleur, and N. Nolhier, “High robustness PNP-based structure for the ESD protection of high voltage I/Os in an advanced smart power technology,” Proc. IEEE Bipolar/BiCMOS Circuits Technology Meeting 2007, pp. 226–229
    [53] P. J. Mergens, “ESD Protection Considerations in Advance High-Voltage Technologies for Automotive,” EOS/ESD 2006, pp. 54-63.
    [54] B. Keppens, M. Mergens, C. Trinh, C. Russ, B. Camp, and K. Verhaege, “ESD protection solutions for high voltage technologies,” Proc. EOS/ESD Symp., pp. 289-298, 2004.
    [55] V. A. Vashchenko and A. Shibkov, ESD Design for Analog Circuits, Berlin, Germany:Springer-Verlag, 2010.
    [56] S.-Y. Liu, W.-F. Sun, H.-W. Pan, H. Wang, and Q.-S. Qian, “A novel latch-up free SCR-LDMOS for power-rail ESD clamp in half-bridge driver IC,” IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1-3, 2012.
    [57] J.-H. Lee, N. M. Iyer, and M. Prabhu, “ESD Robust Fully Salicided 5-V Integrated Power MOSFET in Submicron CMOS,” IEEE Electron Device Lett., vol. 38, no. 5, pp. 623–625, Mar. 2017.
    [58] A. Amerasekera and C. Duvvury, “The Impact of Technology Scaling on ESD Robustness and Protection Circuit Design,” IEEE trans. on Components, Packaging, and Manufacturing Technology-part A, vol.18, no. 2, June 1995, pp. 314-320.
    [59] Junjun Li, David Alvarez, Kiran Chatty, Michel J. Abou-Khalil, Robert Gauthier, Christian Russ, Christopher Seguin, and Ralph Halbach, “Analysis of Failure Mechanism on Gate-Silicided and Gate-Non-Silicided, Drain/Source Silicide-blocked ESD NMOSFETs in a 65nm Bulk CMOS Technology,” 13th IPFA 2006, pp. 276-280.
    [60] S.-C. Huang, E. Hsu, C. Wu, V. Chen, S. Shih, E. Liu, J. Huang, Y.C. Lin, C.J. Liu, A. Yukawa, F. Tanaka, and H. Lee, “The Salicide Blocking Size Optimization for Improving Integrated Circuits’ ESD Performances,” EDMS 2013, no. 86.
    [61] J.-H. Lee, Y.-H. Wu, C.-H. Tang, T.-C. Peng, S.-H. Chen, O. Oates, “A Simple and Useful Layout Scheme to Achieve Uniform Current Distribution for Multi-Finger Silicided Grounded-Gate NMOS,” 45th annual. IEEE international Reliability physics symposium, pp. 588-589, 2007.
    [62] S.-C. Huang, K.-H. Chen, H.-M. Chen, M.-C. Ho, and S.-J. Shen, “ESD Avoiding Circuits for Solving OTP Memory Falsely Programmed Issues,” IEEE Circuits and Systems Magazine, vol. 10, no. 2, pp. 30-39, Feb. 2010.
    [63] M-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuits for submicron CMOS VLSI,” IEEE Trans Electron Dev vol. 46, no. 1, pp. 173-183, Jan. 1999.
    [64] S.-H. Chen and M.-D. Ker, “Investigation on NMOS-based power-rail ESD clamp circuits with gate-driven mechanism in a 0.13-μm CMOS technology,” Microelectron. Reliab., vol. 50, no. 6, pp. 821–830, Jun. 2010.

    QR CODE