簡易檢索 / 詳目顯示

研究生: 陳泓廷
Chen, Hung-Ting
論文名稱: 添加劑對 PEDOT:PSS 膠體溶液與薄膜結構之影響探討
Effects of additives on structural characteristics of poly(3,4-ethylene-dioxy-thiophene):poly(styrene sulfonate) colloidal dispersions and the corresponding spin-cast films
指導教授: 蘇安仲
Su, An-Chung
口試委員: 鄭有舜
Jeng, U-Ser
阮至正
Ruan, Jr-Jeng
楊小青
Yang, Hsiao-Ching
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 36
中文關鍵詞: 導電高分子添加劑材料結構分析
外文關鍵詞: PEDOT:PSS, Additives, Structural characterization
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脂溶性導電高分子PEDOT常搭配水溶性的高分子PSS以增加在水中的分散性。然而PSS導電性差,因此降低了PEDOT:PSS膜的導電性。近年來許多研究者發現,將離子液體添加劑 (例如[BMIM]BF4) 參混PEDOT:PSS膜裡或是對膜進行後處理 (例如利用甲醇) 可以大幅增加膜的導電性。此研究主要探討導電性增加的原因。
    我們利用小角度X光散射 (SAXS)、反射式小角度散射 (GISAXS)、X光反射率 (XRR) 與表面電位顯微鏡 (SPoM)等等儀器來探討PEDOT:PSS水溶液與其膜的結構。由SAXS分析中可知,PEDOT:PSS 水溶液主要是分散的奈米小橢球 (大約長24 nm,寬3 nm)。水溶液在有[BMIM]BF4 的存在下會有較多較大顆的聚集。由GISAXS和SPoM分析可得知,當我們的膜中有較多的[BMIM]BF4,他會大幅增加碎形結構 (fractal structure),而碎形結構可以提供電子導通路徑進而增加膜的導電性。利用後處理所得到的膜也擁有較多的碎形結構,但是他們的特徵尺寸大約是36 nm,相對加入[BMIM]BF4的膜有超過微米的特徵尺寸來的小許多。
    總體而言我們可以知道導電性增加與碎形結構的量成正相關,而後處理的膜擁有的小而多的碎形結構能夠增加彼此的接觸面積,比起少量大塊碎形結構能有更多的導電通路。


    Poly(3,4-ethylene-dioxy-thiophene) (PEDOT) is an inherently hydrophobic and conductive polymer which usually doped with poly(styrene sulfonate) (PSS) for higher dispersity in aqueous solution. Nevertheless, PSS, a non-conductive polymer, inevitably lessens conductivity performance of PEDOT:PSS film. Plenty researchers have discovered that the conductivity of PEDOT:PSS films could be strongly enhanced upon minor presence of an ionic-liquid additive (such as [BMIM]BF4) in the dispersion or after post-deposition treatment with volatile solvent (such as methanol). The present study concerns the origin of this conductivity enhancement.
    By use of small-angle X-ray scattering (SAXS), grazing incidence small-angle X-ray scattering (GISAXS), X-ray reflectivity (XRR) and surface potential microscopy (SPoM), here we report morphological differences in PEDOT:PSS solutions and corresponding films upon presence/treatment of selected additive/solvent. According to SAXS results, nano-ellipsoid (ca. 24 nm in length and 3 nm in width) are the dominant in aqueous solution and the existence of [BMIM]BF4 increases the population of big aggregates. GISAXS and SPoM results show that population of fractal clusters rises along concentration of [BMIM]BF4 in the film, which give rise to conduction paths in the film state. Fractal cluster formed as well after the film was treated with methanol, but with smaller correlation length (ca. 36 nm), in contrast to micron-size fractals in the former case.
    We conclude that instead of the apparent phase separation or gel formation, the increased conductivity is mainly due to enhanced formation of fractal structure. Successive little fractal structures, formed after methanol treatment, provide more effective conduction-pathways comparing to huge fractal structures in identical volume.

    誌謝 I 摘要 II ABSTRACT III LIST OF FIGURES V LIST OF TABLES VI 1. Introduction 1 1.1. Background 1 1.2. Objective and approach 5 2. Experimental details 7 2.1. Materials and Specimen Preparation 7 2.2. Instruments 7 3. Data analysis 9 3.1. SAXS/GISAXS 9 3.2. Form/structure factors 10 3.2.1. Ellipsoid form factor 10 3.2.2. Square well potential for dispersed particles 10 3.2.3. Fractal structure for agglomerated particles 11 4. Results and Discussion 12 4.1. Structural characterization of PEDOT:PSS/[BMIM]BF4 solutions 12 4.1.1. Concentration effect of [BMIM]BF4 on PEDOT:PSS solutions 12 4.1.2. Time-resolved analysis of PEDOT:PSS/[BMIM]BF4 solutions 14 4.2. Studies of additives impacts on PEDOT:PSS thin films 16 4.2.1. Conductivity and surface potential measurements 16 4.2.2. Investigation of vertical composition profiles 18 4.2.3. Structural characterization of thin films 21 5. Conclusion 26 Appendix A. Fitting SAXS/GISAXS profiles 27 Appendix B. Conductivity measurement of pure [BMIM]BF4 28 Appendix C. IR analysis of clear solution from PEDOT:PSS/[BMIM]BF4 mixture 29 Appendix D. 2D GISAXS profiles 30 Appendix E. Fitting lines of SAXS and GISAXS profiles 31 References 34

    1. Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K., Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells. Adv. Funct. Mater. 2011, 21 (6), 1076-1081.
    2. Timpanaro, S.; Kemerink, M.; Touwslager, F. J.; De Kok, M. M.; Schrader, S., Morphology and conductivity of PEDOT/PSS films studied by scanning–tunneling microscopy. Chem. Phys. Lett. 2004, 394 (4–6), 339-343.
    3. Nardes, A. M.; Janssen, R. A.; Kemerink, M., A Morphological Model for the Solvent‐Enhanced Conductivity of PEDOT: PSS Thin Films. Adv. Funct. Mater. 2008, 18 (6), 865-871.
    4. Döbbelin, M.; Marcilla, R.; Salsamendi, M.; Pozo-Gonzalo, C.; Carrasco, P. M.; Pomposo, J. A.; Mecerreyes, D., Influence of ionic liquids on the electrical conductivity and morphology of PEDOT: PSS films. Chem. Mater. 2007, 19 (9), 2147-2149.
    5. Xia, Y.; Sun, K.; Ouyang, J., Highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells. Energy & Environmental Science 2012, 5 (1), 5325-5332.
    6. Badre, C.; Marquant, L.; Alsayed, A. M.; Hough, L. A., Highly Conductive Poly (3, 4‐ethylenedioxythiophene): Poly (styrenesulfonate) Films Using 1‐Ethyl‐3‐methylimidazolium Tetracyanoborate Ionic Liquid. Adv. Funct. Mater. 2012, 22 (13), 2723-2727.
    7. Huang, J.-H.; Kekuda, D.; Chu, C.-W.; Ho, K.-C., Electrochemical characterization of the solvent-enhanced conductivity of poly (3, 4-ethylenedioxythiophene) and its application in polymer solar cells. J. Mater. Chem. 2009, 19 (22), 3704-3712.
    8. Alemu, D.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W., Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy & environmental science 2012, 5 (11), 9662-9671.
    9. Benor, A.; Takizawa, S.-y.; Pérez-Bolívar, C.; Anzenbacher, P., Efficiency improvement of fluorescent OLEDs by tuning the working function of PEDOT: PSS using UV–ozone exposure. Org. Electron. 2010, 11 (5), 938-945.
    10. Nardes, A. M.; Kemerink, M.; De Kok, M.; Vinken, E.; Maturova, K.; Janssen, R., Conductivity, work function, and environmental stability of PEDOT: PSS thin films treated with sorbitol. Org. Electron. 2008, 9 (5), 727-734.
    11. Hu, Z.; Zhang, J.; Zhu, Y., Effects of solvent-treated PEDOT: PSS on organic photovoltaic devices. Renewable Energy 2014, 62, 100-105.
    12. Sun, K.; Xia, Y.; Ouyang, J., Improvement in the photovoltaic efficiency of polymer solar cells by treating the poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) buffer layer with co-solvents of hydrophilic organic solvents and hydrophobic 1, 2-dichlorobenzene. Sol. Energy Mater. Sol. Cells 2012, 97, 89-96.
    13. Lim, K.; Jung, S.; Lee, S.; Heo, J.; Park, J.; Kang, J.-W.; Kang, Y.-C.; Kim, D.-G., The enhancement of electrical and optical properties of PEDOT: PSS using one-step dynamic etching for flexible application. Org. Electron. 2014, 15 (8), 1849-1855.
    14. Shi, H.; Liu, C.; Xu, J.; Song, H.; Lu, B.; Jiang, F.; Zhou, W.; Zhang, G.; Jiang, Q., Facile fabrication of PEDOT: PSS/polythiophenes bilayered nanofilms on pure organic electrodes and their thermoelectric performance. ACS applied materials & interfaces 2013, 5 (24), 12811-12819.
    15. Thomas, J. P.; Zhao, L.; McGillivray, D.; Leung, K. T., High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition. Journal of Materials Chemistry A 2014, 2 (7), 2383-2389.
    16. Wei, Q.; Mukaida, M.; Naitoh, Y.; Ishida, T., Morphological change and mobility enhancement in PEDOT: PSS by adding co‐solvents. Adv. Mater. 2013, 25 (20), 2831-2836.
    17. Thomas, J. P.; Leung, K. T., Defect‐Minimized PEDOT: PSS/Planar‐Si Solar Cell with Very High Efficiency. Adv. Funct. Mater. 2014, 24 (31), 4978-4985.
    18. Luo, J.; Billep, D.; Waechtler, T.; Otto, T.; Toader, M.; Gordan, O.; Sheremet, E.; Martin, J.; Hietschold, M.; Zahn, D. R., Enhancement of the thermoelectric properties of PEDOT: PSS thin films by post-treatment. Journal of Materials Chemistry A 2013, 1 (26), 7576-7583.
    19. Unsworth, N. K.; Hancox, I.; Dearden, C. A.; Sullivan, P.; Walker, M.; Lilley, R.; Sharp, J.; Jones, T. S., Comparison of dimethyl sulfoxide treated highly conductive poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) electrodes for use in indium tin oxide-free organic electronic photovoltaic devices. Org. Electron. 2014, 15 (10), 2624-2631.
    20. Luo, J.; Billep, D.; Blaudeck, T.; Sheremet, E.; Rodriguez, R. D.; Zahn, D. R.; Toader, M.; Hietschold, M.; Otto, T.; Gessner, T., Chemical post-treatment and thermoelectric properties of poly (3, 4-ethylenedioxylthiophene): poly (styrenesulfonate) thin films. J. Appl. Phys. 2014, 115 (5), 054908.
    21. Park, H.; Lee, S. H.; Kim, F. S.; Choi, H. H.; Cheong, I. W.; Kim, J. H., Enhanced thermoelectric properties of PEDOT: PSS nanofilms by a chemical dedoping process. Journal of Materials Chemistry A 2014, 2 (18), 6532-6539.
    22. Yeo, J.-S.; Yun, J.-M.; Kim, D.-Y.; Park, S.; Kim, S.-S.; Yoon, M.-H.; Kim, T.-W.; Na, S.-I., Significant vertical phase separation in solvent-vapor-annealed poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) composite films leading to better conductivity and work function for high-performance indium tin oxide-free optoelectronics. ACS applied materials & interfaces 2012, 4 (5), 2551-2560.
    23. Jiang, Q.; Liu, C.; Song, H.; Shi, H.; Yao, Y.; Xu, J.; Zhang, G.; Lu, B., Improved thermoelectric performance of PEDOT: PSS films prepared by polar-solvent vapor annealing method. Journal of Materials Science: Materials in Electronics 2013, 24 (11), 4240-4246.
    24. Kong, F.; Liu, C.; Song, H.; Xu, J.; Huang, Y.; Zhu, H.; Wang, J., Effect of solution pH value on thermoelectric performance of free-standing PEDOT: PSS films. Synth. Met. 2013, 185, 31-37.
    25. Xia, Y.; Sun, K.; Ouyang, J., Solution‐processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24 (18), 2436-2440.
    26. Ouyang, J., Solution-processed PEDOT: PSS films with conductivities as indium tin oxide through a treatment with mild and weak organic acids. ACS applied materials & interfaces 2013, 5 (24), 13082-13088.
    27. McCarthy, J. E.; Hanley, C. A.; Brennan, L. J.; Lambertini, V. G.; Gun'ko, Y. K., Fabrication of highly transparent and conducting PEDOT: PSS films using a formic acid treatment. Journal of Materials Chemistry C 2014, 2 (4), 764-770.
    28. Mengistie, D. A.; Ibrahem, M. A.; Wang, P.-C.; Chu, C.-W., Highly conductive PEDOT: PSS treated with formic acid for ITO-free polymer solar cells. ACS applied materials & interfaces 2014, 6 (4), 2292-2299.
    29. Mukherjee, S.; Singh, R.; Gopinathan, S.; Murugan, S.; Gawali, S.; Saha, B.; Biswas, J.; Lodha, S.; Kumar, A., Solution-processed poly (3, 4-ethylenedioxythiophene) thin films as transparent conductors: Effect of p-toluenesulfonic acid in dimethyl sulfoxide. ACS applied materials & interfaces 2014, 6 (20), 17792-17803.
    30. Kim, J.; Jung, J.; Lee, D.; Joo, J., Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synth. Met. 2002, 126 (2), 311-316.
    31. Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; van der Gon, A.; Louwet, F.; Fahlman, M.; Groenendaal, L.; De Schryver, F.; Salaneck, W. R., Conductivity, morphology, interfacial chemistry, and stability of poly (3, 4‐ethylene dioxythiophene)–poly (styrene sulfonate): A photoelectron spectroscopy study. J. Polym. Sci., Part B: Polym. Phys. 2003, 41 (21), 2561-2583.
    32. Huang, J.; Miller, P. F.; Wilson, J. S.; de Mello, A. J.; de Mello, J. C.; Bradley, D. D., Investigation of the effects of doping and post‐deposition treatments on the conductivity, morphology, and work function of poly (3, 4‐ethylenedioxythiophene)/poly (styrene sulfonate) films. Adv. Funct. Mater. 2005, 15 (2), 290-296.
    33. Na, S. I.; Kim, S. S.; Jo, J.; Kim, D. Y., Efficient and Flexible ITO‐Free Organic Solar Cells Using Highly Conductive Polymer Anodes. Adv. Mater. 2008, 20 (21), 4061-4067.
    34. Reyes-Reyes, M.; Cruz-Cruz, I.; López-Sandoval, R., Enhancement of the electrical conductivity in PEDOT: PSS films by the addition of dimethyl sulfate. The Journal of Physical Chemistry C 2010, 114 (47), 20220-20224.
    35. Lang, U.; Müller, E.; Naujoks, N.; Dual, J., Microscopical investigations of PEDOT: PSS thin films. Adv. Funct. Mater. 2009, 19 (8), 1215-1220.
    36. Nardes, A. M.; Kemerink, M.; Janssen, R. A.; Bastiaansen, J. A.; Kiggen, N. M.; Langeveld, B. M.; van Breemen, A. J.; de Kok, M. M., Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films. Adv. Mater. 2007, 19 (9), 1196-1200.
    37. Kemerink, M.; Timpanaro, S.; De Kok, M.; Meulenkamp, E.; Touwslager, F., Three-dimensional inhomogeneities in PEDOT: PSS films. The Journal of Physical Chemistry B 2004, 108 (49), 18820-18825.
    38. Mengistie, D. A.; Wang, P.-C.; Chu, C.-W., Effect of molecular weight of additives on the conductivity of PEDOT: PSS and efficiency for ITO-free organic solar cells. Journal of Materials Chemistry A 2013, 1 (34), 9907-9915.
    39. Palumbiny, C. M.; Heller, C.; Schaffer, C. J.; Körstgens, V.; Santoro, G.; Roth, S. V.; Müller-Buschbaum, P., Molecular reorientation and structural changes in cosolvent-treated highly conductive PEDOT: PSS electrodes for flexible indium tin oxide-free organic electronics. The Journal of Physical Chemistry C 2014, 118 (25), 13598-13606.
    40. Takano, T.; Masunaga, H.; Fujiwara, A.; Okuzaki, H.; Sasaki, T., PEDOT nanocrystal in highly conductive PEDOT: PSS polymer films. Macromolecules 2012, 45 (9), 3859-3865.
    41. Rivnay, J.; Inal, S.; Collins, B. A.; Sessolo, M.; Stavrinidou, E.; Strakosas, X.; Tassone, C.; Delongchamp, D. M.; Malliaras, G. G., Structural control of mixed ionic and electronic transport in conducting polymers. Nature communications 2016, 7.
    42. Mengistie, D. A.; Chen, C.-H.; Boopathi, K. M.; Pranoto, F. W.; Li, L.-J.; Chu, C.-W., Enhanced thermoelectric performance of PEDOT: PSS flexible bulky papers by treatment with secondary dopants. ACS applied materials & interfaces 2014, 7 (1), 94-100.
    43. JIKEI, M.; YAMAYA, T.; URAMOTO, S.; MATSUMOTO, K., Conductivity Enhancement of PEDOT/PSS Films by Solvent Vapor Treatment. International Journal of the Society of Materials Engineering for Resources 2014, 20 (2), 158-162.
    44. Palumbiny, C. M.; Schlipf, J.; Hexemer, A.; Wang, C.; Müller‐Buschbaum, P., The Morphological Power of Soap: How Surfactants Lower the Sheet Resistance of PEDOT: PSS by Strong Impact on Inner Film Structure and Molecular Interface Orientation. Advanced Electronic Materials 2016.
    45. Vosgueritchian, M.; Lipomi, D. J.; Bao, Z., Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22 (2), 421-428.
    46. Xia, Y.; Ouyang, J., PEDOT: PSS films with significantly enhanced conductivities induced by preferential solvation with cosolvents and their application in polymer photovoltaic cells. J. Mater. Chem. 2011, 21 (13), 4927-4936.
    47. Xia, Y.; Ouyang, J., Highly conductive PEDOT: PSS films prepared through a treatment with geminal diols or amphiphilic fluoro compounds. Org. Electron. 2012, 13 (10), 1785-1792.
    48. Ouyang, J.; Xu, Q.; Chu, C.-W.; Yang, Y.; Li, G.; Shinar, J., On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer 2004, 45 (25), 8443-8450.
    49. Ouyang, J.; Chu, C. W.; Chen, F. C.; Xu, Q.; Yang, Y., High‐conductivity poly (3, 4‐ethylenedioxythiophene): poly (styrene sulfonate) film and its application in polymer optoelectronic devices. Adv. Funct. Mater. 2005, 15 (2), 203-208.
    50. Sharma, R.; Sharma, K., The structure factor and the transport properties of dense fluids having molecules with square well potential, a possible generalization. Physica A: Statistical Mechanics and its Applications 1977, 89 (1), 213-218.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE