簡易檢索 / 詳目顯示

研究生: 羅世翔
SHIH-HSIANG LO
論文名稱: 無線感測網路之相互定位機制利用預先知識使用貝式網路
Cooperative Localization with Pre-Knowledge using Bayesian Network for Wireless Sensor Networks
指導教授: 鍾葉青
Yeh-Ching Chung
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 31
中文關鍵詞: 定位機制無線感測網路
外文關鍵詞: Localization scheme, Wireless sensor networks
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如果能利用定位機制為感測節點自動取得定位資訊,則在無線感測網路的應用上會更俱有意義。目前大多數的定位機制只有使用到的定位資訊來自於定位機制執行時期,而未使用到一些佈署時所已知的資訊。在這篇論文中我們利用一些已知佈署知識,提出一定位模型是建立在貝式網路基礎上,此模型包含是否接收到訊號、佈署資訊(例如:格網長度、格網大小等)、佈署知識(例如:某一感測節點鄰近的感測節點的資訊、感測節點之通訊可能性等)元素,利用這些元素去描述感測節點在佈署成格網形狀時的位置關係,以一機率模型的方式來呈現其因果關係。基於此定位模型,我們提出一相互定位機制利用預先知識使用貝式網路之演算法(CLPKBN),去達到自動定位之功能可應用在無線感測網路中。為了評估提出之機制,我們實作相互定位機制利用預先知識使用貝式網路之演算法、機率格網定位機制(Probability Grid)在一模擬器上。我們評估不同感測節點數量在感測環境中、不同比例之已知位置節點在感測環境中、不同無線電遮蔽效果在感測環境中、不同大小之傳輸訊號功率在感測節點中等參數。評估的標準是去計算此兩個演算法之定位精準度。實驗結果顯示相互定位機制利用預先知識使用貝式網路之演算法優於機率格網定位機制在大多數的測試數據下。


    Obtaining location information by localization schemes for sensor nodes makes applications of wireless sensor networks (WSNs) more meaningful. Most of localization schemes only use the information gathered during the execution of the localization scheme. In this thesis, we proposed a location model based on Bayesian Network [18] with proximity measurement, the deployment information (such as grid distance, grid size, etc.), and the deployment knowledge (such as neighbors of a sensor node, the connectivity betweens two sensor nodes, etc.) to describe the relations of the locations of sensor nodes deployed in a grid topology with the probabilistic graphical model. Based on the location model, we present a cooperative localization algorithm, the CLPKBN scheme, to do the localization for a WSN. To evaluate the proposed scheme, we implement the CLPKBN scheme and the Probability Grid scheme on a simulator. Several parameters, including different deployment sizes, different ratio of anchor nodes, different deployment for anchor nodes, different shadowing effects, and different transmission signal power, are used as measurement metrics. The experimental results show that the CLPKBN scheme outperforms the Probability Grid scheme in most of test cases.

    Contents Chapter 1 Introduction 1 Chapter 2 Related Work 5 2.1 Range-based schemes 5 2.2 Range-free schemes 6 Chapter 3 Location Model 8 3.1 Preliminaries 8 3.2 DI 11 3.3 PK 12 3.4 E and BR 16 Chapter 4 The CLPKBN Algorithm 19 Chapter 5 Performance Evaluations 23 Chapter 6 Conclusions and Future Work 29 References 30 List of Figures Figure 1 A 3x3 grid deployment. 11 Figure 2: A Bayesian network depicts the relation about Loc variable. 17 Figure 3: The CLPKBN algorithm. 21 Figure 4: A 3x3 deployment topology. 22 Figure 5: Localization errors under various DSize and DAN. 25 Figure 6: Localization errors under various TSP. 26 Figure 7: Localization errors under various AP. 27 Figure 8: Localization errors under various SE. 28

    [1]. A. Nasipuri and K. Li, “A Directionality based Location Discovery Scheme for Wireless Sensor Networks.”, in First ACM International Workshop on Wireless Sensor Networks and Applications, (Atlanta, GA), Sep. 2002.
    [2]. A. Savides, C. Han and M. Srivatava, “Dynamic fine-grained localication in Ad-Hoc networks of sensors.” in Proc. ACM MobiComm, 2001.
    [3]. B. W. Parkinson, J. Spilker, “Global Positioning System: theory and applications,” in Progress in Aeronautics and Astronautics, vol. 163, 1996.
    [4]. D. Niculescu and B. Nath, “DV-based positioning in adhoc networks.” in Telecommunication Systems, 2003, pp. 268-280.
    [5]. D. Niculescu and B. Nath, “Ad Hoc Positioning System (APS) Using AOA.” In Proceedings of INFOCOM, 2003.
    [6]. G. Simon, P. Volgyesi, M. Maroti and A. Ledeczi, “Simulation-based optimization of communication protocols for large-scale wireless sensor networks.” in Proc. Aerospace Conference, Mar. 2003, pp. 3_1339-3_1346.
    [7]. G. L. Joo and S. V. Rao, “Grid-Based Location Estimation Scheme using Hop Counts for Multi-hop Wireless Sensor Networks.” in Conf. Wireless Ad-Hoc Networks, May. 2004, pp. 330-334.
    [8]. K.-F. Ssu, C.-H. Ou and H. C. Jiau, “Localization With Mobile Anchor Points in Wireless Sensor Networks.” in Tran. IEEE Vehicualr Technology, May. 2005, pp. 1187-1197.s
    [9]. L. Doherty, K.S.J. Pister, and L.E. Ghaoui, “Convex position estimation in wireless sensor networks,’’ in Proc. IEEE INFOCOM, 2001, vol. 3, pp. 1655–1663.
    [10]. L. Hu and D. Evans, “Localization for Mobile Sensor Networks.” in ACM MobiCom’04, Sep. 2004.
    [11]. N. Bulusu, J. Heidemann and D. Estrin, “GPS-less Low Cost Outdoor Localization for Very Small Devices.” in IEEE Personal Communications Magazine, Special Issue on Smart Spaces and Environments, Oct. 2000, pp. 28-34.
    [12]. N. Patwari and A.O. Hero III, “Using proximity and quantized RSS for sensor localization in wireless networks,’’ in Proc. IEEE/ACM 2nd Workshop Wireless Sensor Networks and Applications, Sept. 2003, pp. 20–29.
    [13]. N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero III, R. L. Moses and N. S. Correal, “Locating the Nodes: Cooperative localization in wireless sensor networks,” Signal Processing Magazine, IEEE, Volume 22, Issue 4, 2005, pp. 54 – 69.
    [14]. P. Bahl and V. N. Padmanabhan, “An In-Building RF-Based User Location and Tracking System.” in Proc. of the IEEE Infocom, Mar. 2000, pp. 775-784.
    [15]. P. Biswas and Y. Ye, “Semidefinite programming for ad hoc wireless sensor network localization,’’ Dept. of Computer Science, Stanford University, Stanford, CA, Tech. Rep., Sept. 2003.
    [16]. R. Nagpal, “Organizing a Global Cordinate System from Local Information on an Amorphous Computer.” A.I. Memo 1666, MIT A.I. Laboratory, Aug. 1999.
    [17]. R. Stoleru and J.A. Stankovic, “Probability Grid: A Location Estimation Scheme for Wireless Sensor Network.” in Conf. IEEE Sensor and Ad Hoc Communications and Networks, Oct. 2004, pp. 430-438.
    [18]. S. Russell and P. Norvig, Artificial Intelligence A Modern Approach. Prentice-Hall, 2003, pp. 492-504.
    [19]. T. He, C. Huang, B. Blum and J. A. Stankovic, T. Abdelzaher, “Range-Free Localization Schemes for Large Scale Sensor Networks.” in The Ninth Annual International Conference on Mobile Computing and Networking, Sep. 2004.
    [20]. Y. Shang, W. Ruml, Y. Zhang, and M.P.J. Fromherz, “Localization from mere connectivity,’’ in Proc. Mobihoc‘03, June 2003, pp. 201–212.
    [21]. JProwler, http://www.isis.vanderbilt.edu/Projects/nest/jprowler/
    [22]. WIKIPEDIA, http://en.wikipedia.org/wiki/Maximum_likelihood_estimation.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE