研究生: |
林浚丞 Lin, Chun-Cheng |
---|---|
論文名稱: |
以硫醇添加劑控制電鍍銅的動⼒學與微結構及其在鋰⾦屬電池負極的應⽤ Using thiol additive to control the kinetics and microstructure of copper electrodeposition and its application as the anode of lithium metal batteries |
指導教授: |
胡啟章
Hu, Chi-Chang |
口試委員: |
萬其超
Wan, Chi-Chao 溫添進 Wen, Ten-Chin 廖建能 Liao, Chien-Neng 張家欽 Chang, Chia-Chin 段興宇 Tuan, Hsing-Yu 張仍奎 Chang, Jeng-Kuei |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 英文 |
論文頁數: | 200 |
中文關鍵詞: | 電鍍銅 、硫醇添加劑 、奈⽶雙晶銅 、電鍍鋰 、鋰⾦屬電池 |
外文關鍵詞: | copper electrodepositon, thiol additive, nanotwinned copper, lithium electrodepositon, lithium metal batteries |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文研究主旨是銅與鋰金屬的基礎電鍍行為,並以新穎的合成方法製備具特殊晶形的銅箔,與探討其在可充放電式鋰金屬中的應用。本論文的研究主題可分為三大方向:
1. 硫醇類型添加劑對電鍍銅還原動力學的影響及其老化失效原因
在新穎的半導體及印刷電路板銅製程中,以電鍍法將奈米或微米級的孔洞或溝槽填滿作為內連導線使用,已被廣泛應用於微型晶片及電路板的製程中。為使微奈米級填孔製程達到超級填充的電鍍成果,必須添加適當的有機添加劑以輔助電鍍銅的沉積,其中含硫醇官能基的物質時常被使用為鍍銅的光澤劑。為了提高填孔製程的操作穩定性,我們針對硫醇類添加劑對電鍍銅的基礎動力學影響進行研究,成果發現光澤劑對硫酸銅電鍍的還原機制有著顯著影響。相對於僅含有銅離子、硫酸、氯離子與抑制劑的電解液中,其具備顯著的去極化能力,並能將銅離子還原的機制由類雙電子轉移、一步驟反應途徑轉為單電子轉移、兩步驟反應的途徑。但此去極化能力會在電鍍過程中逐步失效並喪失填孔能力,本研究亦對造成其老化的原因進行探討,並發現在陽極表面直接氧化是造成其裂解的最主要原因。而在不溶性陽極的電鍍體系中,挑選具低活性的混合金屬氧化物塗層,可有效延長硫醇添加劑的壽命,維持填孔電鍍的操作穩定性。
2. 在直流電高速電鍍模式下以硫醇類型添加劑誘使奈米雙晶銅結構生成
增強電鍍銅膜的物理性質,如機械強度、導電性、及抗電遷移能力等,是下一世代半導體電鍍製程的關鍵之一,而製備具高密度奈米雙晶缺陷的銅被認為是一個有潛力的方向。然而,目前能誘使奈米雙晶銅的生長的電鍍條件中,多仰賴脈衝電鍍的模式,藉由調控適當的電流密度與電鍍週期來達成。因為有無可避免的停滯時間,以脈衝電鍍製備奈米雙晶銅的速率皆低於10奈米每秒,因此很難應用於商用電鍍的場域。本研究提出了一個新的方法,利用高濃度的硫醇類型添加劑,成功誘使高密度奈米雙晶銅生長,且其成長速率可高於150奈米每秒,可滿足許多商用電鍍製程所要求的成長速度。且應用電化學分析方法,探討高濃度硫醇添加劑對電鍍銅還原動力學的影響,發現二價銅與一價銅的反應速率被大幅提升,單位時間內吸附於陰極表面的一價銅核種大幅增加,使奈米雙晶銅成功在高速直流電鍍的條件下被生成。
3. 應用具單一晶面的奈米雙晶銅於可充電式鋰金屬電池的集電層
由於可充電式鋰金屬電池具備高能量密度與極低還原電位的特質,其被認為是有潛力應用於下一世代鋰電池的設計中。在充電過程中,鋰離子會被電鍍至負極集電層上,並以鋰金屬的形式存在。銅箔是最常被使用的負極集電層,但當使用現今商用的電解液系統時,鋰金屬在銅箔表面的成長通常呈現晶枝狀且結構鬆散,循環效率低。因為商用銅箔通常為具多種晶相的材料,當鋰離子在此異質材料成核與成長時,其可能受到銅晶面的表面能量不同影響,造成局部的成核速度不均,進而加劇鋰晶枝生長的現象。本研究測試了實驗室自行合成,具單一(111)晶面的奈米雙晶銅箔,做為鋰金屬電池的集電層,以改善晶面能差異可能對鋰金屬成長的負面影響。成果發現相較於商用多晶銅箔,鋰金屬在奈米雙晶銅箔上生長的結構更為緊實,且多以較大的橢圓形晶粒存在,大幅減少了鋰晶枝的生長。為驗證其在高電壓、無負極鋰電池中的效應,研究測試了奈米雙晶銅箔與鎳鈷錳酸鋰三元材料匹配的全電池。實驗成果亦證實,在操作電壓高達4.3伏特的情況下,奈米雙晶銅箔能有效提升電池的循環效率,減少無活性鋰金屬生成的比例,有效增加鋰金屬的應用效率。
In this work, the electrodeposition behavior of copper and lithium was studied, and there are three major topics:
1. Effect of thiol additive on the reduction kinetic of copper and its degradation behavior during copper electrodeposition
In modern copper electrodeposition process, filling the nano- or microscale vias or trenches to serve as the copper interconnect is ubiquitous inside the integrated circuit (IC) and printed circuit board (PCB), which both are key components in miniature electronic devices. Using several types of organic additives to assist the electroplating process has been widely adopted, and chemical possessing thiol ligand is also one of an essential additives. In our work, we carefully investigated the role of thiol additive in copper electrodeposition, and it is found that such depolarizing additive can shift the copper reaction kinetic from the apparent two-electron-transfer, single step reduction route toward single-electron-transfer, two steps reduction mechanism. The genuine reason leading to the deactivation of thiol additive was also investigated, and it turns out the direct oxidation at the anode surface is responsible for the major oxidation source. In addition, the catalytic ability of mixed metal oxide coating on titanium anode has proven to possess significant influence on the oxidation rate of thiol additive, and using the rather inert coating can effectively prolong the lifetime of thiol additive.
2. Induce the growth of nanotwinned copper with thiol additive by high-speed direct-current electrodeposition
Improving the physical properties of electrodeposited copper film by introducing high-density nanotwinned interphases has been proven to be an effective approach. It can enhance the yield strength, maintain the conductivity, and retard the rate of electromigration phenomenon. To induce the growth of nanotwinned copper, current strategy relies on using pulsed electrodeposition with appropriate plating period and current density. However, the growth rate of copper within such method is restricted by the inevitable off-current period, and the growth rate is limited below 10 nm∙s-1, which is unacceptable for many copper plating process. In our work, we developed a novel method to induce the growth of nanotwinned copper with direct-current electrodeposition mode, and the critical factor is adding proper amount of thiol additive. The growth rate of copper is successfully promoted up to 150 nm∙s-1, which is the faster than any current reports, and is able to satisfy the production rate for most commercial copper plating process. The mechanism to induce such structure is also examined by electrochemical analyses, and we confirmed that the cuprous ion concentration during copper electrodeposition was greatly enhanced, leading to faster nucleation rate for Cu growth.
3. Employ nanotwinned Cu as the anode of lithium metal batteries
Lithium metal batteries (LMBs) have drawn wide attention owing to the very high potential capacity and low reduction potential. During the charge process of LMBs, lithium will be electrodeposited on anode current collector, which is normally copper foil, and store the energy as metallic lithium. When lithium nucleate and grow on the heterogeneous copper substrate, the deposition pattern was mostly dendritic and loose, and numerous approaches including modifying electrolyte composition, adding additives to ameliorate the Li deposition morphology have been proposed. However, the effect caused by the properties of copper foil is still unstudied, especially the contribution from the facet selectivity of copper. Therefore, we synthesize the nanotwinned copper foil by high-speed direct-current plating, and compare its effect on battery performance with the commercial foil. The result demonstrated the (111)-oriented surface can ameliorate the macroscopic lithium distribution, and allow larger granular Li grains growth, which can reduce the porosity of Li deposition. Supported by the full batteries cycling and material analysis result, nanotwinned copper foils can enhance the usage efficiency of lithium, and decrease the amount of dead Li accumulation.
1. Chang, T.; Jin, Y.; Wen, L.; Zhang, C.; Leygraf, C.; Wallinder, I. O.; Zhang, J., Synergistic effects of gelatin and convection on copper foil electrodeposition. Electrochimica Acta 2016, 211, 245-254.
2. Moffat, T. P.; Bonevich, J.; Huber, W.; Stanishevsky, A.; Kelly, D.; Stafford, G.; Josell, D., Superconformal electrodeposition of copper in 500–90 nm features. Journal of The Electrochemical Society 2000, 147 (12), 4524-4535.
3. Kobayashi, T.; Kawasaki, J.; Mihara, K.; Honma, H., Via-filling using electroplating for build-up PCBs. Electrochimica Acta 2001, 47 (1-2), 85-89.
4. Okubo, T.; Watanabe, K.; Kondo, K., Analytical study of the characteristics of Cu (I) species for the via-filling electroplating using a RRDE. Journal of The Electrochemical Society 2007, 154 (3), C181-C187.
5. Lee, H.-J.; Kim, D. I.; Ahn, J. H.; Lee, D. N., Electron backscattered diffraction analysis of copper damascene interconnect for ultralarge-scale integration. Thin Solid Films 2005, 474 (1-2), 250-254.
6. Schmitt, K. G.; Schmidt, R.; Von-Horsten, H. F.; Vazhenin, G.; Gewirth, A. A., 3-Mercapto-1-propanesulfonate for Cu electrodeposition studied by in situ shell-isolated nanoparticle-enhanced Raman spectroscopy, density functional theory calculations, and cyclic voltammetry. The Journal of Physical Chemistry C 2015, 119 (41), 23453-23462.
7. Moffat, T. P.; Wheeler, D.; Josell, D., Electrodeposition of copper in the SPS-PEG-Cl additive system I. Kinetic measurements: Influence of SPS. Journal of The Electrochemical Society 2004, 151 (4), C262-C271.
8. Tan, M.; Guymon, C.; Wheeler, D. R.; Harb, J. N., The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition. Journal of The Electrochemical Society 2007, 154 (2), D78-D81.
9. Hsiao, H.-Y.; Liu, C.-M.; Lin, H.-w.; Liu, T.-C.; Lu, C.-L.; Huang, Y.-S.; Chen, C.; Tu, K., Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 2012, 336 (6084), 1007-1010.
10. Chen, B.; Xu, J.; Wang, L.; Song, L.; Wu, S., Synthesis of quaternary ammonium salts based on diketopyrrolopyrroles skeletons and their applications in copper electroplating. ACS applied materials & interfaces 2017, 9 (8), 7793-7803.
11. Yang, S.; Thacker, Z.; Allison, E.; Bennett, M.; Cole, N.; Pinhero, P. J., Electrodeposition of copper for three-dimensional metamaterial fabrication. ACS applied materials & interfaces 2017, 9 (46), 40921-40929.
12. Jeon, H.; Cho, I.; Jo, H.; Kim, K.; Ryou, M.-H.; Lee, Y. M., Highly rough copper current collector: improving adhesion property between a silicon electrode and current collector for flexible lithium-ion batteries. RSC Advances 2017, 7 (57), 35681-35686.
13. Betz, J.; Brinkmann, J. P.; Nölle, R.; Lürenbaum, C.; Kolek, M.; Stan, M. C.; Winter, M.; Placke, T., Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium. Advanced Energy Materials 2019, 1900574.
14. Liu, J.; Bao, Z.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q.; Liaw, B. Y.; Liu, P.; Manthiram, A., Pathways for practical high-energy long-cycling lithium metal batteries. Nature Energy 2019, 4 (3), 180-186.
15. Xu, G.; Shangguan, X.; Dong, S.; Zhou, X.; Cui, G., Key scientific issues in formulating blended lithium salts electrolyte for lithium batteries. Angewandte Chemie 2019.
16. Qian, J.; Adams, B. D.; Zheng, J.; Xu, W.; Henderson, W. A.; Wang, J.; Bowden, M. E.; Xu, S.; Hu, J.; Zhang, J. G., Anode‐free rechargeable lithium metal batteries. Advanced Functional Materials 2016, 26 (39), 7094-7102.
17. Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., High-performance lithium battery anodes using silicon nanowires. Nature nanotechnology 2008, 3 (1), 31.
18. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nature nanotechnology 2017, 12 (3), 194.
19. Lee, K.-L.; Jung, J.-Y.; Lee, S.-W.; Moon, H.-S.; Park, J.-W., Electrochemical characteristics of a-Si thin film anode for Li-ion rechargeable batteries. Journal of Power Sources 2004, 129 (2), 270-274.
20. Kim, Y.-L.; Sun, Y.-K.; Lee, S.-M., Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology. Electrochimica Acta 2008, 53 (13), 4500-4504.
21. Chu, H.-C.; Tuan, H.-Y., High-performance lithium-ion batteries with 1.5 μm thin copper nanowire foil as a current collector. Journal of Power Sources 2017, 346, 40-48.
22. Hu, C. C., Electrochemistry principles and methods. Wunanbooks: Taiwan, 2011.
23. Bard, A. J.; Faulkner, L. R.; Leddy, J.; Zoski, C. G., Electrochemical methods: fundamentals and applications. wiley New York: 1980; Vol. 2.
24. Alvarado, J.; Schroeder, M. A.; Pollard, T. P.; Wang, X.; Lee, J. Z.; Zhang, M.; Wynn, T.; Ding, M.; Borodin, O.; Meng, Y. S., Bisalt ether electrolytes: a pathway towards lithium metal batteries with Ni-rich cathodes. Energy & Environmental Science 2019, 12 (2), 780-794.
25. Lee, D. U.; Park, M. G.; Park, H. W.; Seo, M. H.; Wang, X.; Chen, Z., Highly Active and Durable Nanocrystal‐Decorated Bifunctional Electrocatalyst for Rechargeable Zinc–Air Batteries. ChemSusChem 2015, 8 (18), 3129-3138.
26. Schlesinger, M.; Paunovic, M., Modern electroplating. John Wiley & Sons: 2011; Vol. 55.
27. Kondo, K.; Akolkar, R. N.; Barkey, D. P.; Yokoi, M., Copper electrodeposition for nanofabrication of electronics devices. Springer: 2014; Vol. 14.
28. Mattsson, E.; Bockris, J. M., Galvanostatic studies of the kinetics of deposition and dissolution in the copper+ copper sulphate system. Transactions of the Faraday Society 1959, 55, 1586-1601.
29. Seiter, H.; Fischer, H.; Albert, L., Elektrochemisch-morphologische studien zur erforschung des mechanismus der elektrokristallisation, fern vom anfangszustand. Electrochimica Acta 1960, 2 (1-3), 97-120.
30. Bockris, J. M.; Enyo, M., Mechanism of electrodeposition and dissolution processes of copper in aqueous solutions. Transactions of the Faraday Society 1962, 58, 1187-1202.
31. Conway, B.; Bockris, J. O. M.; Linton, H., Proton conductance and the existence of the H3O· ion. The Journal of Chemical Physics 1956, 24 (4), 834-850.
32. Tantavichet, N.; Pritzker, M. D., Low-and high-frequency pulse current and pulse reverse plating of copper. Journal of The Electrochemical Society 2003, 150 (10), C665-C677.
33. Hayashi, T.; Matsuura, S.; Kondo, K.; Kataoka, K.; Nishimura, K.; Yokoi, M.; Saito, T.; Okamoto, N., Role of cuprous ion in copper electrodeposition acceleration. Journal of The Electrochemical Society 2015, 162 (6), D199-D203.
34. Daryadel, S.; Behroozfar, A.; Morsali, S. R.; Moreno, S.; Baniasadi, M.; Bykova, J.; Bernal, R. A.; Minary-Jolandan, M., Localized pulsed electrodeposition process for three-dimensional printing of Nanotwinned metallic nanostructures. Nano letters 2017, 18 (1), 208-214.
35. Nagy, Z.; Blaudeau, J.; Hung, N.; Curtiss, L.; Zurawski, D., Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society 1995, 142 (6), L87-L89.
36. Soares, D. M.; Wasle, S.; Weil, K. G.; Doblhofer, K., Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry 2002, 532 (1-2), 353-358.
37. Dow, W.-P.; Huang, H.-S.; Yen, M.-Y.; Chen, H.-H., Roles of chloride ion in microvia filling by copper electrodeposition II. studies using epr and galvanostatic measurements. Journal of The Electrochemical Society 2005, 152 (2), C77-C88.
38. Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H., Damascene copper electroplating for chip interconnections. IBM Journal of Research and Development 1998, 42 (5), 567-574.
39. Yokoi, M.; Konishi, S.; Hayashi, T., Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku oyobi Kogyo Butsuri Kagaku 1984, 52 (4), 218-223.
40. Stoychev, D.; Tsvetanov, C., Behaviour of poly (ethylene glycol) during electrodeposition of bright copper coatings in sulfuric acid electrolytes. Journal of applied electrochemistry 1996, 26 (7), 741-749.
41. Kelly, J. J.; West, A. C., Copper deposition in the presence of polyethylene glycol I. Quartz crystal microbalance study. Journal of The Electrochemical Society 1998, 145 (10), 3472-3476.
42. Kelly, J. J.; West, A. C., Copper deposition in the presence of polyethylene glycol II. Electrochemical impedance spectroscopy. Journal of The Electrochemical Society 1998, 145 (10), 3477-3481.
43. Feng, Z. V.; Li, X.; Gewirth, A. A., Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced Raman study. The Journal of Physical Chemistry B 2003, 107 (35), 9415-9423.
44. Dow, W.-P.; Yen, M.-Y.; Lin, W.-B.; Ho, S.-W., Influence of molecular weight of polyethylene glycol on microvia filling by copper electroplating. Journal of The Electrochemical Society 2005, 152 (11), C769-C775.
45. NOMA, H.; KOGA, T.; HIRAKAWA, C.; NONAKA, K.; KAIBUKI, T.; MORIYAMA, S., Analysis of Cu (I) in copper sulfate electroplating solution. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan 2012, 63 (2).
46. Chang, S.-C.; Shieh, J.-M.; Lin, K.-C.; Dai, B.-T.; Wang, T.-C.; Chen, C.-F.; Feng, M.-S.; Li, Y.-H.; Lu, C.-P., Wetting effect on gap filling submicron damascene by an electrolyte free of levelers. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 2002, 20 (4), 1311-1316.
47. Kelly, J. J.; Tian, C.; West, A. C., Leveling and microstructural effects of additives for copper electrodeposition. Journal of The Electrochemical Society 1999, 146 (7), 2540-2545.
48. Tang, M.; Zhang, S.; Qiang, Y.; Chen, S.; Luo, L.; Gao, J.; Feng, L.; Qin, Z., 4, 6-Dimethyl-2-mercaptopyrimidine as a potential leveler for microvia filling with electroplating copper. Rsc Advances 2017, 7 (64), 40342-40353.
49. Xiang, J.; Wang, S.; Li, J.; He, W.; Wang, C.; Chen, Y.; Zhang, H.; Miao, H.; Zhou, J.; Jin, X., Electrochemical Factors of Levelers on Plating Uniformity of Through-Holes: Simulation and Experiments. Journal of The Electrochemical Society 2018, 165 (9), E359-E365.
50. Dow, W.-P.; Huang, H.-S.; Yen, M.-Y.; Huang, H.-C., Influence of convection-dependent adsorption of additives on microvia filling by copper electroplating. Journal of The Electrochemical Society 2005, 152 (6), C425-C434.
51. Dow, W.-P.; Liu, C.-W., Evaluating the filling performance of a copper plating formula using a simple galvanostat method. Journal of The Electrochemical Society 2006, 153 (3), C190-C194.
52. Garcia-Cardona, E.; Wong, E. H.; Barkey, D. P., NMR spectral studies of interactions between the accelerants SPS and MPS and copper chlorides. Journal of The Electrochemical Society 2011, 158 (3), D143-D148.
53. Gu, M.; Zhong, Q., Copper electrocrystallization from acidic sulfate electrolyte containing MPS additive. Journal of Applied Electrochemistry 2011, 41 (7), 765.
54. Lin, C.-C.; Hu, C.-C.; Lu, Y.-T.; Guo, R.-H., Reconsider the depolarization behavior of copper electrodeposition in the presence of 3-mercapto-1-propanesulfonate. Electrochemistry Communications 2018, 91, 75-78.
55. Brennan, R. G.; Phillips, M. M.; Yang, L.-Y. O.; Moffat, T. P., Characterization and purification of commercial SPS and MPS by ion chromatography and mass spectrometry. Journal of The Electrochemical Society 2011, 158 (3), D178-D186.
56. Hai, N. T. M.; Broekmann, P., Smart hybrid polymers for advanced damascene electroplating: combination of superfill and leveling properties. ChemElectroChem 2015, 2 (8), 1096-1099.
57. West, A. C.; Mayer, S.; Reid, J., A superfilling model that predicts bump formation. Electrochemical and Solid-State Letters 2001, 4 (7), C50-C53.
58. Chalupa, R.; Cao, Y.; West, A., Unsteady diffusion effects on electrodeposition into a submicron trench. Journal of applied electrochemistry 2002, 32 (2), 135-143.
59. Akolkar, R.; Landau, U., A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization. Journal of The Electrochemical Society 2004, 151 (11), C702-C711.
60. Akolkar, R.; Landau, U., Mechanistic analysis of the “bottom-up” fill in copper interconnect metallization. Journal of The Electrochemical Society 2009, 156 (9), D351-D359.
61. Kondo, K.; Matsumoto, T.; Watanabe, K., Role of additives for copper damascene electrodeposition experimental study on inhibition and acceleration effects. Journal of The Electrochemical Society 2004, 151 (4), C250-C255.
62. Chiu, Y.-D.; Dow, W.-P., Accelerator screening by cyclic voltammetry for microvia filling by copper electroplating. Journal of The Electrochemical Society 2013, 160 (12), D3021-D3027.
63. Haak, R.; Ogden, C.; Tench, D., CYCLIC VOLTAMMETRIC STRIPPING ANALYSIS OF ACID COPPER SULFATE PLATING BATHS--PARTS 1 AND 2. PLAT SURF FINISH 1981, 68 (4), 52-55.
64. Tench, D.; White, J., Cyclic pulse voltammetric stripping analysis of acid copper plating baths. Journal of the Electrochemical Society 1985, 132 (4), 831-834.
65. Moffat, T. P.; Baker, B.; Wheeler, D.; Josell, D., Accelerator aging effects during copper electrodeposition. Electrochemical and solid-state letters 2003, 6 (4), C59-C62.
66. Choe, S.; Kim, M. J.; Kim, H. C.; Cho, S. K.; Ahn, S. H.; Kim, S.-K.; Kim, J. J., Degradation of bis (3-sulfopropyl) disulfide and its influence on copper electrodeposition for feature filling. Journal of The Electrochemical Society 2013, 160 (12), D3179-D3185.
67. Kimizuka, R.; Toda, H.; Eda, T.; Kishimoto, K.; Oh, R.; Honma, H.; Takai, O., Influence of SPS decomposition product 1, 3-propane disulfonic acid on electrolytic copper via filling performance. Journal of The Electrochemical Society 2015, 162 (12), D584-D588.
68. Volov, I.; Mann, O.; Hoenersch, Y.; Wahl, B.; West, A. C., Chromatography of bis‐(3‐sulfopropyl) disulfide and its breakdown products by HPLC coupled with electrochemical detection. Journal of separation science 2011, 34 (18), 2385-2390.
69. Jeong, S. M.; Shin, H.-S.; Cho, S.-H.; Hur, J.-M.; Lee, H. S., Electrochemical behavior of a platinum anode for reduction of uranium oxide in a LiCl molten salt. Electrochimica Acta 2009, 54 (26), 6335-6340.
70. Comninellis, C.; Vercesi, G., Problems in DSA® coating deposition by thermal decomposition. Journal of Applied Electrochemistry 1991, 21 (2), 136-142.
71. Duby, P., The history of progress in dimensionally stable anodes. JoM 1993, 45 (3), 41-43.
72. Trasatti, S., Electrocatalysis: understanding the success of DSA®. Electrochimica Acta 2000, 45 (15-16), 2377-2385.
73. Hu, C.-C.; Chen, W.-C., Effects of substrates on the capacitive performance of RuOx· nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochimica Acta 2004, 49 (21), 3469-3477.
74. Hu, C.-C.; Chang, K.-H.; Lin, M.-C.; Wu, Y.-T., Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano letters 2006, 6 (12), 2690-2695.
75. Alanazi, N. M.; Al-Abdulhadi, A. I.; Al-Zharani, T. Y.; Al-Khaldi, T. A.; Alghamdi, R. A.; Ali, A. H. A.-S.; Shen, S., Electrochemical properties of IrO2-Ti2O5-Co3O4 coated Ti anode in acid media. Surface and Coatings Technology 2019.
76. Xu, W.; Haarberg, G. M.; Seland, F.; Sunde, S.; Ratvik, A. P.; Holmin, S.; Gustavsson, J.; Afvander, Å.; Zimmerman, E.; Åkre, T., The durability of the thermally decomposed IrO2-Ta2O5 coated titanium anode in a sulfate solution. Corrosion Science 2019, 150, 76-90.
77. Xu, W.; Haarberg, G. M.; Sunde, S.; Seland, F.; Ratvik, A. P.; Holmin, S.; Gustavsson, J.; Afvander, Å.; Zimmerman, E.; Åkre, T., Sandblasting effect on performance and durability of Ti based IrO2− Ta2O5 anode in acidic solutions. Electrochimica Acta 2019, 295, 204-214.
78. Lu, L.; Shen, Y.; Chen, X.; Qian, L.; Lu, K., Ultrahigh strength and high electrical conductivity in copper. Science 2004, 304 (5669), 422-426.
79. Lu, L.; Chen, X.; Huang, X.; Lu, K., Revealing the maximum strength in nanotwinned copper. Science 2009, 323 (5914), 607-610.
80. Xu, D.; Sriram, V.; Ozolins, V.; Yang, J.-M.; Tu, K.; Stafford, G. R.; Beauchamp, C., In situ measurements of stress evolution for nanotwin formation during pulse electrodeposition of copper. Journal of Applied Physics 2009, 105 (2), 023521.
81. Lu, L.; Sui, M.; Lu, K., Superplastic extensibility of nanocrystalline copper at room temperature. Science 2000, 287 (5457), 1463-1466.
82. Lu, K., Stabilizing nanostructures in metals using grain and twin boundary architectures. Nature Reviews Materials 2016, 1 (5), 16019.
83. Jang, D.; Li, X.; Gao, H.; Greer, J. R., Deformation mechanisms in nanotwinned metal nanopillars. Nature nanotechnology 2012, 7 (9), 594.
84. Lagrange, S.; Brongersma, S.; Judelewicz, M.; Saerens, A.; Vervoort, I.; Richard, E.; Palmans, R.; Maex, K., Self-annealing characterization of electroplated copper films. Microelectronic Engineering 2000, 50 (1-4), 449-457.
85. Ho, C.-E.; Chen, C.-C.; Lu, M.-K.; Lee, Y.-W.; Wu, Y.-S., In-situ study on the self-annealing behavior of electroplated Cu through the cantilever method, XRD, and EBSD. Surface and Coatings Technology 2016, 303, 86-93.
86. Chen, C.-C.; Yang, C.-H.; Wu, Y.-S.; Ho, C.-E., Depth-dependent self-annealing behavior of electroplated Cu. Surface and Coatings Technology 2017, 320, 489-496.
87. Chen, K.-C.; Wu, W.-W.; Liao, C.-N.; Chen, L.-J.; Tu, K., Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 2008, 321 (5892), 1066-1069.
88. Anderoglu, O.; Misra, A.; Wang, H.; Zhang, X., Thermal stability of sputtered Cu films with nanoscale growth twins. Journal of Applied Physics 2008, 103 (9).
89. Kim, D.; Chang, J.-h.; Park, J.; Pak, J. J., Formation and behavior of Kirkendall voids within intermetallic layers of solder joints. Journal of Materials Science: Materials in Electronics 2011, 22 (7), 703-716.
90. Yu, J.; Kim, J. Y., Effects of residual S on Kirkendall void formation at Cu/Sn–3.5Ag solder joints. Acta Materialia 2008, 56 (19), 5514-5523.
91. Liu, T.-C.; Liu, C.-M.; Huang, Y.-S.; Chen, C.; Tu, K.-N., Eliminate Kirkendall voids in solder reactions on nanotwinned copper. Scripta Materialia 2013, 68 (5), 241-244.
92. Sethuraman, V. A.; Hardwick, L. J.; Srinivasan, V.; Kostecki, R., Surface structural disordering in graphite upon lithium intercalation/deintercalation. Journal of Power Sources 2010, 195 (11), 3655-3660.
93. Weber, R.; Genovese, M.; Louli, A.; Hames, S.; Martin, C.; Hill, I. G.; Dahn, J., Long cycle life and dendrite-free lithium morphology in anode-free lithium pouch cells enabled by a dual-salt liquid electrolyte. Nature Energy 2019, 4 (8), 683-689.
94. Zhang, J.-G., Anode-less. Nature Energy 2019, 4 (8), 637-638.
95. Bieker, G.; Winter, M.; Bieker, P., Electrochemical in situ investigations of SEI and dendrite formation on the lithium metal anode. Phys Chem Chem Phys 2015, 17 (14), 8670-9.
96. Lu, D.; Shao, Y.; Lozano, T.; Bennett, W. D.; Graff, G. L.; Polzin, B.; Zhang, J.; Engelhard, M. H.; Saenz, N. T.; Henderson, W. A.; Bhattacharya, P.; Liu, J.; Xiao, J., Failure Mechanism for Fast-Charged Lithium Metal Batteries with Liquid Electrolytes. Advanced Energy Materials 2015, 5 (3).
97. Jurng, S.; Brown, Z. L.; Kim, J.; Lucht, B. L., Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes. Energy & Environmental Science 2018, 11 (9), 2600-2608.
98. Woo, J.-J.; Maroni, V. A.; Liu, G.; Vaughey, J. T.; Gosztola, D. J.; Amine, K.; Zhang, Z., Symmetrical impedance study on inactivation induced degradation of lithium electrodes for batteries beyond lithium-ion. Journal of The Electrochemical Society 2014, 161 (5), A827-A830.
99. Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J. Z.; Lee, M.-H.; Alvarado, J.; Schroeder, M. A.; Yang, Y., Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572 (7770), 511-515.
100. Pei, A.; Zheng, G.; Shi, F.; Li, Y.; Cui, Y., Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal. Nano Lett 2017, 17 (2), 1132-1139.
101. Dai, H.; Xi, K.; Liu, X.; Lai, C.; Zhang, S., Cationic surfactant-based electrolyte additives for uniform lithium deposition via lithiophobic repulsion mechanisms. Journal of the American Chemical Society 2018, 140 (50), 17515-17521.
102. Ren, X.; Zou, L.; Jiao, S.; Mei, D.; Engelhard, M. H.; Li, Q.; Lee, H.; Niu, C.; Adams, B. D.; Wang, C., High-concentration ether electrolytes for stable high-voltage lithium metal batteries. ACS Energy Letters 2019, 4 (4), 896-902.
103. Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G., High rate and stable cycling of lithium metal anode. Nat Commun 2015, 6, 6362.
104. Yoo, D.-J.; Kim, K. J.; Choi, J. W., The Synergistic Effect of Cation and Anion of an Ionic Liquid Additive for Lithium Metal Anodes. Advanced Energy Materials 2018, 8 (11).
105. Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H., Free-Standing Copper Nanowire Network Current Collector for Improving Lithium Anode Performance. Nano Lett 2016, 16 (7), 4431-7.
106. Yun, Q.; He, Y. B.; Lv, W.; Zhao, Y.; Li, B.; Kang, F.; Yang, Q. H., Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes. Adv Mater 2016, 28 (32), 6932-9.
107. Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G., Stable Li Metal Anodes via Regulating Lithium Plating/Stripping in Vertically Aligned Microchannels. Adv Mater 2017, 29 (40).
108. Kim, Y.-J.; Kwon, S. H.; Noh, H.; Yuk, S.; Lee, H.; Jin, H. s.; Lee, J.; Zhang, J.-G.; Lee, S. G.; Guim, H.; Kim, H.-T., Facet selectivity of Cu current collector for Li electrodeposition. Energy Storage Materials 2019, 19, 154-162.
109. Ma, X.; Liu, Z.; Chen, H., Facile and scalable electrodeposition of copper current collectors for high-performance Li-metal batteries. Nano Energy 2019, 59, 500-507.
110. Comninellis, C.; Vercesi, G., Characterization of DSA®-type oxygen evolving electrodes: choice of a coating. Journal of Applied Electrochemistry 1991, 21 (4), 335-345.
111. Miles, M. H.; .Thomason, M. A., Periodic Variations of Overvoltages for Water Electrolysis in Acid Solutions from Cyclic Voltammetric Studies. Journal of The Electrochemical Society 1976, 123 (10), 1459-1461.
112. Ho, C. E.; Chen, C. C.; Hsu, L. H.; Lu, M. K., Electron backscatter diffraction characterization of electrolytic Cu deposition in the blind-hole structure: Current density effect. Thin Solid Films 2015, 584, 78-84.
113. Jenkins, R.; Snyder, R. L., Introduction to X-ray powder diffractometry. Wiley: New York, 1996; Vol. 138.
114. Briggs, D., Handbook of X-ray and ultraviolet photoelectron spectroscopy. Heyden: London, 1977.
115. Wyant, J. C., White light interferometry. International Society for Optics and Photonics 2002, 4737, 98-107.
116. Vickerman, J. C.; Briggs, D., ToF-SIMS: materials analysis by mass spectrometry. im: Manchester, 2013.
117. Son, K. A.; Mao, A.; Hess, D.; Brown, L.; White, J.; Kwong, D. L.; Roberts, D.; Vrtis, R., Deposition and Annealing of Ultrathin Ta2O5 Films on Nitrogen Passivated Si ( 100 ) Electrochemical and Solid-State Letters 1998, 1, 178-180.
118. Lin, S. M.; Wen, T. C., Oxygen Evolution on Ir‐Ru‐Sn Ternary Oxide‐Coated Electrodes in H2SO4 Solution An Approach Employing Statistical Experimental Strategy. Journal of the Electrochemical Society 1993, 140, 2265-2271.
119. Thorseth, M.; Scalisi, M.; Lee, I.; Park, S.-M.; Lee, Y.-H.; Prange, J.; Imanari, M.; Lefebvre, M.; Calvert, J., Evaluation of Cu Pillar Chemistries. In iMAPS Device Packaging Conference, Arizona, USA, 2016.
120. Bufford, D. C.; Wang, Y. M.; Liu, Y.; Lu, L., Synthesis and microstructure of electrodeposited and sputtered nanotwinned face-centered-cubic metals. MRS Bulletin 2016, 41 (4), 286-291.
121. Giannuzzi, L., Introduction to focused ion beams: instrumentation, theory, techniques and practice. Springer Science & Business Media: Raleigh, 2004.
122. Flegler, S. L.; Jr., J. W. H.; Klomparens, K. L., Scanning & Transmission Electron Microscopy. Oxford University Press: Oxford, 1997.
123. Meyer, G.; Amer, N. M., Novel optical approach to atomic force microscopy. Applied physics letters 1988, 53.12, 1045-1047.
124. Hasegawa, M.; Mieszala, M.; Zhang, Y.; Erni, R.; Michler, J.; Philippe, L., Orientation-controlled nanotwinned copper prepared by electrodeposition. Electrochimica Acta 2015, 178, 458-467.