研究生: |
顏琇婷 Hsiu-Ting Yen |
---|---|
論文名稱: |
Dual Polyhedra 對偶多面體 |
指導教授: |
全任重
Jen-Chung Chuan |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 93 |
中文關鍵詞: | 對偶多面體 |
外文關鍵詞: | dual polyhedra |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
在本篇論文中,藉由3D動態幾何軟體Cabri 3D的製圖效果,呈現Platonic多面體:cube、dodecahedron、icosahedron、octahedron、 tetrahedron;Kepler-Poinsot多面體:great dodecahedron、small stellated dodecahedron、great icosahedron、great stellated dodecahedron和Archimedean多面體:cuboctahedron、great rhombicosidodecahedron、great rhombicuboctahedron、icosidodecahedron、small rhombicosidodecahedron、small rhombicuboctahedron、truncated cube、truncated dodecahedron、truncated icosahedron、truncated octahedron、truncated tetrahedron的對偶多面體,以及角錐體和雙角錐體與自身對偶的關係。另外,本文還介紹了Platonic多面體和Archimedean多面體的積木堆疊法,找出Platonic多面體和Archimedean多面體的基本組合塊,再藉由反射與對稱拼湊出Platonic多面體和Archimedean多面體。
在以下網頁可以清楚看到所有多面體的動態模擬與詳細的作圖過程:http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/9521502/透過這個網頁,每個人都可以清楚看到操作多面體的變化和動態幾何軟體Cabri 3D的應用發展。
Abstract
In this thesis,I would like to perform the duality of five kinds of solids:Platonic solids(cube、dodecahedron、icosahedron、octahedron、 tetrahedron)、Kepler-Poinsot solids(great dodecahedron、small stellated dodecahedron、great icosahedron、great stellated dodecahedron)、Archimedean solids (cuboctahedron
、great rhombicosidodecahedron、great rhombicuboctahedron、icosidodecahedron、small rhombicosidodecahedron、small rhombicuboctahedron、truncated cube、truncated dodecahedron、truncated icosahedron、truncated octahedron、truncated tetrahedron)、pyramids with regular polygon faces(triangular pyramid、square pyramid、pentagonal pyramid)、dipyramids with regular polygon faces(triangular dipyramid、square dipyramid、pentagonal dipyramid).In addition,I would like to find the basic block of the Platonic solids and Archimedean solids,then construct the solids by reflection and symmetry .
The following website shows clearly the dynamic simulation and detail process of generating polyhedrons:http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/9521502/
1. Wenninger, M. J. "Dual Models ", 1983, Cambridge University Press
2. Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke,England: Tarquin Pub., 1989.
3. Grunbaum, B. Convex Polytopes, 2nd ed. New York: Springer- Verlag, pp. 46-51, 2003.
4. Weisstein, Eric W. "Self-Dual Polyhedron."
5. B. Grunbaum & G. Shephard, Duality of polyhedra, Shaping space – a polyhedral approach, ed. Senechal and Fleck, Birkhauser (1988), pp. 205-211.
6. Altshiller-Court, N. "The Tetrahedron." Ch. 4 in Modern Pure Solid Geometry. New York: Chelsea, pp. 48-110 and 250, 1979.
7. Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 228, 1987.
8. A Dual for Descartes' Theorem on Polyhedra
Branko Grunbaum and G. C. Shephard
The Mathematical Gazette, Vol. 71, No. 457 (Oct., 1987), pp. 214-216
Published by: The Mathematical Association
9. Uniform Polyhedra
H. S. M. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller
Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 246, No. 916 (May 13, 1954), pp. 401-450
Published by: The Royal Society
10.Archimedean Solids: Transition Metal Mediated Rational Self-Assembly of Supramolecular-Truncated Tetrahedra
Stefan Leininger, Jun Fan, Marion Schmitz and Peter J. Stang
Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 4 (Feb. 15, 2000), pp. 1380-1384
Published by: National Academy of Sciences
11. http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/943204/
12. http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/933260/new/new/
3d.htm
13. http://mathworld.wolfram.com/ArchimedeanDual.htm
14. http://mathworld.wolfram.com/ArchimedeanSolid.html
15. http://mathworld.wolfram.com/DualPolyhedron.html
16. http://en.wikipedia.org/wiki/Dual_polyhedron
17. http://mathworld.wolfram.com/DualityPrinciple.html
18. http://cage.rug.ac.be/~hs/polyhedra/keplerpoinsot.html
19. http://www.georgehart.com/virtual-polyhedra/duality.html
20. http://en.wikipedia.org/wiki/Self-dual_polyhedron
21. http://mathworld.wolfram.com/Kepler-PoinsotSolid.html
22. http://en.wikipedia.org/wiki/Pyramid_%28geometry%29#Pyramids
_with_regular polygon_faces
23. http://mathworld.wolfram.com/Dipyramid.html
24. http://en.wikipedia.org/wiki/Dipyramid
25. http://mathworld.wolfram.com/ElongatedPyramid.html
26. http://www.cut-the-knot.org/Curriculum/Geometry/PolePolar.shtml