簡易檢索 / 詳目顯示

研究生: 顏琇婷
Hsiu-Ting Yen
論文名稱: Dual Polyhedra
對偶多面體
指導教授: 全任重
Jen-Chung Chuan
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 93
中文關鍵詞: 對偶多面體
外文關鍵詞: dual polyhedra
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    在本篇論文中,藉由3D動態幾何軟體Cabri 3D的製圖效果,呈現Platonic多面體:cube、dodecahedron、icosahedron、octahedron、 tetrahedron;Kepler-Poinsot多面體:great dodecahedron、small stellated dodecahedron、great icosahedron、great stellated dodecahedron和Archimedean多面體:cuboctahedron、great rhombicosidodecahedron、great rhombicuboctahedron、icosidodecahedron、small rhombicosidodecahedron、small rhombicuboctahedron、truncated cube、truncated dodecahedron、truncated icosahedron、truncated octahedron、truncated tetrahedron的對偶多面體,以及角錐體和雙角錐體與自身對偶的關係。另外,本文還介紹了Platonic多面體和Archimedean多面體的積木堆疊法,找出Platonic多面體和Archimedean多面體的基本組合塊,再藉由反射與對稱拼湊出Platonic多面體和Archimedean多面體。
    在以下網頁可以清楚看到所有多面體的動態模擬與詳細的作圖過程:http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/9521502/透過這個網頁,每個人都可以清楚看到操作多面體的變化和動態幾何軟體Cabri 3D的應用發展。


    Abstract
    In this thesis,I would like to perform the duality of five kinds of solids:Platonic solids(cube、dodecahedron、icosahedron、octahedron、 tetrahedron)、Kepler-Poinsot solids(great dodecahedron、small stellated dodecahedron、great icosahedron、great stellated dodecahedron)、Archimedean solids (cuboctahedron
    、great rhombicosidodecahedron、great rhombicuboctahedron、icosidodecahedron、small rhombicosidodecahedron、small rhombicuboctahedron、truncated cube、truncated dodecahedron、truncated icosahedron、truncated octahedron、truncated tetrahedron)、pyramids with regular polygon faces(triangular pyramid、square pyramid、pentagonal pyramid)、dipyramids with regular polygon faces(triangular dipyramid、square dipyramid、pentagonal dipyramid).In addition,I would like to find the basic block of the Platonic solids and Archimedean solids,then construct the solids by reflection and symmetry .
    The following website shows clearly the dynamic simulation and detail process of generating polyhedrons:http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/9521502/

    Index of Contents 1.Introduction………………………………………… 7 2.Platonic Solids ……………………………………...9 3.Kepler-Poinsot Solids…………………………… 13 4.Archimedean Solids………………………………17 5.Pyramids With Regular Polygon Faces…………40 6.Dipyramids With Regular Polygon Face………..45 7.Construct Platonic Solids by Blocks……………..46 8.Construct Archimedean Solids by Blocks ……60 9.References…………………………………………91

    1. Wenninger, M. J. "Dual Models ", 1983, Cambridge University Press
    2. Cundy, H. and Rollett, A. Mathematical Models, 3rd ed. Stradbroke,England: Tarquin Pub., 1989.
    3. Grunbaum, B. Convex Polytopes, 2nd ed. New York: Springer- Verlag, pp. 46-51, 2003.
    4. Weisstein, Eric W. "Self-Dual Polyhedron."
    5. B. Grunbaum & G. Shephard, Duality of polyhedra, Shaping space – a polyhedral approach, ed. Senechal and Fleck, Birkhauser (1988), pp. 205-211.
    6. Altshiller-Court, N. "The Tetrahedron." Ch. 4 in Modern Pure Solid Geometry. New York: Chelsea, pp. 48-110 and 250, 1979.
    7. Beyer, W. H. CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 228, 1987.
    8. A Dual for Descartes' Theorem on Polyhedra
    Branko Grunbaum and G. C. Shephard
    The Mathematical Gazette, Vol. 71, No. 457 (Oct., 1987), pp. 214-216
    Published by: The Mathematical Association
    9. Uniform Polyhedra
    H. S. M. Coxeter, M. S. Longuet-Higgins and J. C. P. Miller
    Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 246, No. 916 (May 13, 1954), pp. 401-450
    Published by: The Royal Society
    10.Archimedean Solids: Transition Metal Mediated Rational Self-Assembly of Supramolecular-Truncated Tetrahedra
    Stefan Leininger, Jun Fan, Marion Schmitz and Peter J. Stang
    Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 4 (Feb. 15, 2000), pp. 1380-1384
    Published by: National Academy of Sciences
    11. http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/943204/
    12. http://apollonius.math.nthu.edu.tw/d1/dg-07-exe/933260/new/new/
    3d.htm
    13. http://mathworld.wolfram.com/ArchimedeanDual.htm
    14. http://mathworld.wolfram.com/ArchimedeanSolid.html
    15. http://mathworld.wolfram.com/DualPolyhedron.html
    16. http://en.wikipedia.org/wiki/Dual_polyhedron
    17. http://mathworld.wolfram.com/DualityPrinciple.html
    18. http://cage.rug.ac.be/~hs/polyhedra/keplerpoinsot.html
    19. http://www.georgehart.com/virtual-polyhedra/duality.html
    20. http://en.wikipedia.org/wiki/Self-dual_polyhedron
    21. http://mathworld.wolfram.com/Kepler-PoinsotSolid.html
    22. http://en.wikipedia.org/wiki/Pyramid_%28geometry%29#Pyramids
    _with_regular polygon_faces
    23. http://mathworld.wolfram.com/Dipyramid.html
    24. http://en.wikipedia.org/wiki/Dipyramid
    25. http://mathworld.wolfram.com/ElongatedPyramid.html
    26. http://www.cut-the-knot.org/Curriculum/Geometry/PolePolar.shtml

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE