研究生: |
侯德謙 Hou, Te-Chien |
---|---|
論文名稱: |
半導體矽化鉻和碲化鎘奈米結構之合成及應用研究 Synthesis and Applications of Semiconducting CrSi2 and CdTe-based Nanostructures |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
鄭绍良
廖建能 歐陽浩 吳文偉 陳力俊 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 矽化鉻 、碲化鎘 、奈米結構 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要在探討矽化鉻及碲化鎘奈米結構材料的生長方式,鑑定分析和物理特性。由於他們的半導體特性加上有多樣的實際應用,這兩種材料在近年來受到廣泛的研究。接著這篇論文主要針對於這兩者在設計和開發新的功能性奈米元件。最後也提出一些未來相關的潛在應用。
由矽化鉻及氧化矽組成的奈米電纜成功藉由常壓氣相沉積方式合成出來,且不需要任何的金屬催化劑。我們是利用氯化鉻蒸氣直接和矽基板做反應。結構分析確認出這些奈米電纜是沿著[001]生長。我們並意外發現這些電纜具有獨特的室溫鐵磁及形狀非等向異性。利用第一原理去跑模擬分析發現在電纜介面處的鉻原子有相當高的飽和磁化量 – 2.202波爾磁子,相對的在矽化鉻中間的鉻原子幾乎不具有任何磁化量 (0.002波爾磁子)。實際量測到的磁化量和模擬計算出來的值很接近。我們推論這異常高的磁化量主要來自於兩個原因,一是在介面處的鉻原子因有許多未鍵結鍵,此會貢獻很多淨的磁矩,另一個原因是一維奈米材料有高的表面積比,表面效應會讓整體磁性更顯著。除此之外,被去掉氧化層的矽化鉻奈米線同樣也具有磁性以及磁化量大小會正比於奈米電纜的介面面積,這個研究結果相信會對未來稀磁性半導體元件的開發有顯著的幫助。
第二部分在討討單根矽化鉻奈米線的熱電和機械性質。採用哈曼量測方式,直徑70奈米的熱電優質為0.3,而表面被粗糙化的熱電優質更高達0.35 (增加15個百分比),原因是表面粗糙化會降低材料的熱傳導性進而提升熱電效應。熱電優質並隨著奈米線直徑遞減而上升。另一方面,單根矽化鉻奈米線的平均楊氏模數高達225 GPa,這顯著改善的熱電性質和優越的機械強度對於之後的先進熱電元件必有實際應用的價值。
論文的第三部分主要在探討開發閃鋅礦結構的奈米發電機。製備方式為常見的水熱法,我們合成出閃鋅礦和纖鋅礦共存的微米和奈米碲化鎘線。經由水平包裝後,此奈米發電機的電量輸出高達0.3 V和40 nA並且不會隨著震動頻率而改變,成功證明同樣具有非對稱中心的閃鋅礦結構材料也有壓電性質。這閃鋅礦材料可用於新能源開發方面的自主供電系統。
Synthesis, characterizations, and physical properties of CrSi2 and CdTe-based nanostructures have been investigated. Both materials have attracted intensive research effort in recent years, owing to their semiconducting properties and various practical applications. The design and development in functional nanodevices based on these two materials are of current interest. Furthermore, the possible further advanced applications of these structures are also proposed.
Free-standing CrSi2/SiO2 nanocables have been synthesized via a simple atmospheric pressure chemical vapor deposition (APCVD) method. High quality nanocables were produced by a chemical vapor transport based method without using metal catalysts. The nanocables were formed by a direct reaction of CrCl2 vapor and a Si substrate in one single step. Structural characterization confirms the core of these nanocables to be hexagonal CrSi2, grown in the [001] direction. The room temperature ferromagnetism in CrSi2/SiO2 nanocables is discovered for the first time and the hysteresis loops show shape anisotropy effect when the applied magnetic field is perpendicular or parallel to the substrate. Through first-principles calculation, we found that the Cr atoms at the interface between CrSi2 and SiO2 layers possess a significant high saturation magnetization up to 2.202 B, while the Cr atoms in the middle of CrSi2 layer have a negligible magnetic moment (0.002 B). The calculated total saturation magnetization of the measured sample is close to the measured value obtained by superconducting quantum interference device (SQUID). The room temperature ferromagnetism in CrSi2/SiO2 nanocables is attributed to unpaired Cr atoms at the interface and high surface-to-volume ratio of these 1D nanostructures. Surface spins of pure CrSi2 nanowires after the removal of outer SiO2 layer also contribute large magnetic moment. Moreover, a comparison of measured values for CrSi2/SiO2 nanocables with different aspect ratios indicates that the magnetization is indeed proportional to interface area. The results obtained from the present fundamental studies shall lend substantial support to the development of future dilute magnetic semiconductor devices.
Thermoelectric and mechanical properties of an individual CrSi2 nanowiwre were investigated. ZT value ~0.30+/-0.01 for a single CrSi2 NW with ~70 nm in diameter can be directly assessed by employing Harmon method. A remarkable enhancement of ~15 % for ZT value up to ~0.35+/-0.01 can be achieved due to reduced thermal conductivity by roughening the surface of NW because of higher surface-to-volume ratio. ZT value was found to increase with decreasing diameter. On the other hand, elastic modulus of CrSi2 NWs is first investigated in the present study. The elastic modulus was found to be independent of diameter and the averaged modulus value of ~225 GPa is obtained. The enhancement of the thermoelectric properties of CrSi2 nanowires with robust mechanical properties may lead to their practical applications in advanced thermoelectric devices in the future.
A zinc blende structure based nanogenerator were developed. Here, free-standing CdTe microwires/nanowires (MWs/NWs) have been synthesized with a facile one-step hydrothermal method. The structural analysis shows that the synthesized materials (which consist of wires and particles) are composed of multiple phases with much more zinc blende CdTe than wurtzite CdTe. This coexistence of two phases was also confirmed using high resolution transmission electron microscopy (HRTEM). A laterally packaged nanogenerator (NG) can generate up to 0.3 V and 40 nA when strain is applied on the individual MW. Due to the high stability, the MW can be used in piezoelectric applications under various circumstances. Through these combined properties, zinc blende-based CdTe material appears to be promising for application in self-powered system in energy harvesting.
Chapter 1 Nanotechnology
[1.1] N. Taniguchi, “On the basic concept of ‘nano-technology,” at International Conference of Product Engineers. Tokyo, Japan: Japan Society of Precision Engineering. (1974)
[1.2] R. P. Feynman, “There’s plenty of room at the bottom,” at the Annual Meeting of the American Physical Society on December 29th at California Institute of Technology (1959)
[1.3] C. N. R. Rao, A. Muller, and A. K. Cheetham, “The chemistry of nanomaterials,” Wiley-VCH Verlag GmbH & Co. KGaA (2004)
[1.4] Jon A. McCleverty, and Thomas J. Meyer, “Comprehensive coordination chemistry II: From biology to nanotechnology,” Elsevier Pergamon, Boston (2004)
[1.5] Richard R. H. Coombs, and Dennis W. Robinson, “Nanotechnology in medicine and the biosciences,” Gordon and Breach Publishers (1996)
[1.6] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science 271, 933-937 (1996)
[1.7] C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies,” Annu Rev. Mater. Sci. 30, 545-610 (2000)
[1.8] J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The signature of conductance quantization in metallic point contacts,” Nature 375, 767-769 (1995)
[1.9] K. K. Likharev, and T. Claeson, “Single electronics,” Sci. Am. 266, 80-85 (1992)
[1.10] G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic quantum dot solids,” Acc. Chem. Res. 32, 415-423 (1999)
[1.11] M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant tunneling of electrons via 20 nm scale InAs quantum dot and magnetotunneling spectroscopy of its electronic states,” Appl. Phys. Lett. 70, 105-107 (1996)
[1.12] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large on-off ratios and negative differential resistance in a molecular electronic device,” Science 286, 1550-1552 (1999)
[1.13] C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic transport in y-junction carbon nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000)
[1.14] M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire resonant tunneling diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002)
[1.15] J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on silicon nanoelectronics for terascale integration,” Science 293, 2044-2049 (2001)
[1.16] C. M. Lieber, “The incredible shrinking circuit,” Sci. Am. 285, 58-65 (2001)
[1.17] V. Balzani, A. Credi, and M. Venturi, “The bottom-up approach to molecular-level devices and machines,” Chem. Eur. J. 8, 5524-5532 (2002)
[1.18] G. Schmid, and F. C. Lifeng, “Metal clusters and colloids,” Adv. Mater. 10, 515-526 (1998)
[1.19] P. Yang, Y. Wu, and R. Fan, “Inorganic semiconductor nanowires,” Inter. J. Nano. 1, 1-39(2002)
[1.20] Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, and P. Yang, “Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties,” Chemistry, Euro. J. 8, 1260-1268 (2002)
[1.21] E. W. Wang, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science 277, 1971-1975 (1997)
[1.22] J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of thickness and orientation of solution-grown silicon nanowires,” Science 287, 1471-1473 (2000)
[1.23] L. D. Hicks, and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B 47, 16631-16634 (1993)
[1.24] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-temperature ultraviolet nanowire nanolasers,” Science 292, 1897-1899 (2001)
[1.25] Y. Wu, and P. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605-607 (2000)
[1.26] Y. Wu, B. Messer, and P. Yang, “Superconducting MgB2 nanowires,” Adv. Mater. 13, 1487-1489 (2001)
[1.27] Y. Wu, and P. Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Chem. Soc. 123, 3165-3166 (2001)
[1.28] C. C. Chen, and C. C. Yeh, “Large-scale catalytic synthesis of crystalline gallium nitride nanowires,” Adv. Mater. 12, 738-741 (2000)
[1.29] M. H. Huang, Y. Wu, H. Feick, W. Weber, and P. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport,” Adv. Mater. 13, 113-116 (2001)
[1.30] M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, “Effect of one monolayer of surface gold atoms on the epitaxial growth of InAs nanowhiskers,” Appl. Phys. Lett. 61, 2051-2053 (1992)
[1.31] Y. Wu, R. Fan, and P. Yang, “Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires,” Nano Lett. 2, 83-86 (2002)
[1.32] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of -Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746-750 (2000)
[1.33] A. M. Morales, and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208-211 (1998)
[1.34] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth,” Science 270, 1791-1794 (1995)
[1.35] R. S. Wagner, and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89-90 (1964)
[1.36] X. F. Duan, and C. M. Lieber, “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12, 298-302 (2000)
[1.37] J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of silicon nanowires via gold/silane vapor-liquid-solid reaction,” J. Vac. Sci. Technol. B 15, 554-557 (1997)
[1.38] Y. Y. Wu, and P. D. Yang, “Germanium nanowire growth via simple vapor transport,” Chem. Mater. 12, 605-607 (2000)
[1.39] Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, and X. S. Peng, “Catalytic growth and photoluminescence properties of semiconductor single-crystal ZnS nanowires,” Chem. Phys. Lett. 357, 314-318 (2002)
[1.40] X. C. Wu, and Y. R. Tao, “Growth of CdS nanowires by physical vapor deposition,” J. Cryst. Growth 242, 309-312 (2002)
[1.41] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen “Catalytic growth and characterization of gallium nitride nanowires,” J. Am. Chem. Soc. 123, 2791-2798 (2001)
[1.42] Z. H. Wu, X. Y. Mei, D. Kim, M. Blumin, and H. E. Ruda, “Growth of Au-catalyzed ordered GaAs nanowire arrays by molecular-beam epitaxy,” Appl. Phys. Lett. 81, 5177-5179 (2002)
[1.43] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature 409, 66-69 (2001)
[1.44] Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947-1949 (2001)
[1.45] Y. Jiang, X. M. Meng, J. Liu, Z. Y. Xie, C. S. Lee, and S. T. Lee, “Hydrogen-assisted thermal evaporation synthesis of ZnS nanoribbons on a large scale,” Adv. Mater. 15, 323-327 (2003)
[1.46] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee and S. T. Lee, “Nucleation and growth of Si nanowires from silicon oxide.,” Phys. Rev. B 58, R16024-R16026 (1998)
[1.47] Ming-Yen Lu, National Tsing Hua University Ph.D. dissertation (2009)
[1.48] Ming-Hsiu Hung, National Tsing Hua University Ph.D. dissertation (2012)
Chapter 2 Chromium Disilicide (CrSi2) & Cadmium Telluride (CdTe) – Properties and Potentials
[2.1] J. M. Higgins, R. Ding, J. P. DeGrave and S. Jin, “Signature of helimagnetic ordering in single-crystal MnSi nanowires,” Nano Lett. 10, 1605-1610 (2010)
[2.2] K. Seo, H. Yoon, S. W. Ryu, S. Lee, Y. Jo, M. H. Jung, J. Kim, Y. K. Choi and B. Kim, “Itinerant helimagnetic single-crystalline MnSi nanowires,” ACS Nano 4, 2569-2576 (2010)
[2.3] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Magnetic properties of single-crystalline CoSi nanowires,” Nano Lett. 7, 1240-1245 (2007)
[2.4] A. L. Schmitt, J. M. Higgins and S. Jin, “Chemical synthesis and magnetotransport of magnetic semiconducting Fe1-xCoxSi alloy nanowires,” Nano Lett. 8, 810-815 (2008)
[2.5] L. Ouyang, E. S. Thrall, M. M. Deshmukh and H. Park, “Vapor-phase synthesis and characterization of ε-FeSi nanowires,” Adv. Mater. 18, 1437-1440 (2006)
[2.6] S. W. Hung, T. T. J. Wang, L. W. Chu and L. J. Chen, “Orientation-dependent room-temperature ferromagnetism of FeSi nanowires and applications in nonvolatile memory devices,” J. Phys. Chem. C 115, 15592-15597 (2011)
[2.7] J. In, K. S. K. Varadwaj, K. Seo, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Single-crystalline ferromagnetic Fe1-xCoxSi nanowires,” J. Phys. Chem. C 112, 4728-4275 (2008)
[2.8] F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin and L. Shi, “Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations,” Nano Lett. 7, 1649-1654 (2007)
[2.9] C. Y. Chen, Y. K. Lin, C. W. Hsu, C. Y. Wang, Y. L. Chueh, L. J. Chen, S. C. Lo and L. J. Chou, “Coaxial metal-silicide Ni2Si/C54-TiSi2 nanowires,” Nano Lett. 12, 2254-2259 (2012)
[2.10] Z. Schlesinger, Z. Fisk, H. T. Zhang and M. B. Maple, “Is FeSi a kondo insulator?” J. Phys. B-At. Mol. Opt. Phys. 13, 460-462 (1997)
[2.11] K. Y. Seo, K. S. Varadwaj, D. Y. Cha, J. H. In, Y. J. Kim, J. G. Park and B. S. Kim, “Synthesis and electrical properties of single crystalline CrSi2 nanowires,” J. Phys. Chem. C 111, 9072-9076 (2007)
[2.12] I. Nishida, “The crystal growth and thermoelectric properties of chromium disilicide,” J. Mater. Sci. 7, 1119-1124 (1972)
[2.13] F. Y. Shiau, H. C. Cheng and L. J. Chen, “Epitaxial growth of CrSi2 on (111)Si,” Appl. Phys. Lett. 45, 524-526 (1984)
[2.14] M. T. Chang, C. Y. Chen, L. J. Chou and L. J. Chen, “Core−shell chromium silicide−silicon nanopillars: A contact material for future nanosystems,”ACS NANO 3, 3776-3780 (2009)
[2.15] W. I. Park, H. S. Kim, S. Y. Jang, J. Park, S. Y. Bae, M. Jung, H. Lee and J. Kim, “Transformation of ZnTe nanowires to CdTe nanowires through the formation of ZnCdTe–CdTe core–shell structure by vapor transport,” J. Mater. Chem. 18, 875-880 (2008)
[2.16] F. Jiang, J. Liu, Y. Li, L. Fan, Y. Ding and Y. Li, “Ultralong CdTe nanowires: Catalyst-free synthesis and high-yield transformation into core–shell heterostructures,” Adv. Funct. Mater. 22, 2402-2411 (2012)
[2.17] J. Britt and C. Ferekides, “Thin-film CdS/CdTe solar cell with 15.8% Efficiency,” Appl. Phys. Lett. 62, 2851 (1993)
[2.18] C. C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe quantum dots,”Appl. Phys. Lett. 93, 163107 (2008)
[2.19] M. C. Kum, B. Y. Yoo, Y. W. Rheem, K. N. Bozhilov, W. Chen, A. Mulchandani and N. V. Myung, “Synthesis and characterization of cadmium telluride nanowire,” Nanotechnology 19, 325711 (2008)
[2.20] Y. Li, K. Buddharaju, N. Singh, G. Q. Lo and S. J. Lee, “Chip-level thermoelectric power generators based on high-density silicon nanowire array prepared with top-down CMOS technology,” IEEE Electron Device Lett. 32, 674-676 (2011)
[2.21] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou and Z. L. Wang, “Functional electrical stimulation by nanogenerator with 58 V output voltage,” Nano Lett. 12, 3086-3090 (2012)
[2.22] X. Y. Kong, and Z. L. Wang, “Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts,” Nano Lett. 3, 1625-1631 (2003)
[2.23] W. L. Hughes and Z. L. Wang, “Nanobelts as nanocantilevers,” Appl. Phys. Lett. 82, 2886-2888 (2003)
[2.24] G. Y. Chen, T. Thundat, E. A. Wachter and R. J. Warmack, “Adsorption-induced surface stress and its effects on resonance frequency of microcantilevers” J. Appl. Phys. 77, 3618-3622 (1995)
[2.25] J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H. J. Güntherodt, Ch. Gerber and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316-318 (2000)
[2.26] G. Wu, H. Ji, K. Hansen, T. Thundat, R. Datar, R. Cote, M. F. Hagan, A. K. Chakraborty and A. Majumdar, “Origin of nanomechanical cantilever motion generated from biomolecular interactions,” Proc. Natl. Acad. Sci. USA 98, 1560-1564 (2001)
[2.27] D. Moore, C. Ronning, C. Ma and Z. L. Wang, “Wurtzite ZnS nanosaws produced by polar surfaces,” Chem. Phys. Letts. 385, 8-11 (2004)
[2.28] Z. L. Wang and J. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242-246 (2006)
[2.29] Z. L. Wang, “Towards self-powered nanosystems: From nanogenerators to nanopiezotronics” Adv. Func. Mater. 18, 3553-3567 (2008)
[2.30] Ming-Yen Lu, National Tsing Hua University Ph.D. dissertation (2009)
Chapter 4 Unusual ferromagnetism in CrSi2 (core)/SiO2 (shell) nanocables: Synthesis and simulations via first-principles calculations
[4.1] D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, “A silicon/iron-disilicide light emitting diode operating at a wavelength of 1.5 m,” Nature 387, 686-688 (1997)
[4.2] B. P. Bewlay, H. A. Lipsitt, M. R. Jackson and K. M. Chang, “Processing Microstructures and Properties of Cr-Cr sub 3 Si, Nb-Nb sub 3 Si, and V-V sub 3 Si Eutectics,” Mater. Manuf. Processes 9, 89-109 (1994)
[4.3] I. J. Nishida, “The crystal growth and thermoelectric properties of chromium disilicide,” Mater. Sci. 7, 1119-1124 (1972)
[4.4] Y. Xia, P. Yang, Y. Sun, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-dimensional nanostructures: Synthesis, characterization, and applications,” Adv. Mater. 15, 353-389 (2003)
[4.5] Y. Cui and C. M. Lieber, “Functional nanoscale electronic devices assembled using silicon nanowire building blocks,” Science 291, 851-853 (2001)
[4.6] Z. L. Wang and J. Song, “Piezoelectric Nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242-246 (2006)
[4.7] Y. C. Lin, K. C. Lu, W. W. Wu, J. Bai, L. J. Chen, K. N. Tu and Y. S. Huang, “Single crystalline PtSi nanowires, PtSi/Si/PtSi nanowire heterostructures, and nanodevices,” Nano Lett. 8, 913-918 (2008)
[4.8] R. A. Silva, T. S. Machado, G. Cernicchiaro, A. P. Guimarães and L. C. Sampaio, “Magnetoresistance and magnetization reversal of single Co nanowires,” Phys. Rev. B 79, 134434 (2009)
[4.9] C. M. Chang, Y. C. Chang, C. Y. Lee, P. H. Yeh, W. F. Lee and L. J. Chen, “Ti5Si4 nanobats with excellent field emission properties,” J. Phys. Chem. C 113, 9153-9156 (2009)
[4.10] A. L. Schmitt, L. Zhu, D. Schmeisser, F. J. Himpsel, and S. Jin, “Metallic single-crystal CoSi nanowires via chemical vapor deposition of single-source precursor,” J. Phys. Chem. B 110, 18142-18146 (2006)
[4.11] A. L. Schmitt, M. J. Bierman, D. Schmeisser, F. J. Himpsel and S. Jin, “Synthesis and properties of single-crystal FeSi nanowires,” Nano Lett. 6, 1617-1621 (2006)
[4.12] M. T. Chang, C. Y. Chen, L. J. Chou and L. J. Chen, “Core-shell chromium silicide-silicon nanopillars: A contact material for future nanosystems,” ACS Nano 3, 3776-3780 (2009)
[4.13] Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu and C. D. Chen, “TaSi2 nanowires: A potential field emitter and interconnect,” Nano Lett. 6, 1637-1644 (2006)
[4.14] M. Y. Lu, L. J. Chen, M. Wenjie and Z. L. Wang, “Tunable electric and magnetic properties of CoxZn1-xS nanowires,” Apply. Phys. Lett. 93, 242503 (2008)
[4.15] H. W. Wu, C. J. Tsai and L. J. Chen, “Room temperature ferromagnetism in Mn+-implanted Si nanowires,” Apply. Phys. Lett. 90, 043121 (2007)
[4.16] W. Liang, B. D. Yuhas and P. Yang, “Magnetotransport in Co-doped ZnO nanowires,” Nano Lett. 9, 892-896 (2009)
[4.17] M. Bredol and J. Merikhi, “ZnS precipitation: Morphology control,” J. Mater. Sci. 33, 471-476 (1998)
[4.18] F. Y. Shiau, C. H. Cheng and L. J. Chen, “Epitaxial Growth of CrSi2 on (111)Si,” Appl. Phys. Lett. 45, 524-526 (1984)
[4.19] F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin and L. Shi, “Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations,” Nano Lett. 7, 1649-1654 (2007)
[4.20] K. Y. Seo, K. S. Varadwaj, D. Y. Cha, J. H. In, Y. J. Kim, J. K. Park and B. S. Kim, “Synthesis and electrical properties of single crystalline CrSi2 nanowires,” J. Phys. Chem. C 111, 9072-9076 (2007)
[4.21] J. R. Szczech, A. L. Schmitt, M. J. Bierman and S. Jin, “Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport,” Chem Mater. 19, 3238-3243 (2007)
[4.22] H. Ouyang, H. H. Chiou, Y. S. Wu, J. H. Cheng and W. Ouyang, “First-principles analysis of interfacial nanoscaled oxide layers of bonded N- and P-type GaAs wafers,” J. Appl. Phys. 102, 013710 (2007)
[4.23] K. Matsubayashi, M. Maki, T. Tsuzuki, T. Nishioka and N. K. Sato, “Parasitic ferromagnetism in a hexaboride?” Nature 420, 143-144 (2002)
[4.24] Q. Wang, Q. Sun, P. Jena and Y. Kawazoe, “Magnetic coupling between Cr atoms doped at bulk and surface sites of ZnO,” Appl. Phys. Lett. 87, 162509. (2005)
[4.25] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,’ Phys. Rev. B 47, 558-561 (1993)
[4.26] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169-11186 (1996)
[4.27] R. J. Bell and P. Dean, “The Structure of Vitreous Silica: Validity of the Random Network Theory,” Phil. Mag. 25, 1381-1398 (1972)
[4.28] Y. L. Chueh, L. J. Chou, J. Song and Z. L. Wang, “Mechanical and Magnetic Properties of Ni-doped Metallic TaSi2 Nanowires,” Nanotechnology 18, 145604 (2007)
[4.29] C. A. Ross, M. Hwang, M. Shima, J. Y. Cheng, M. Farhoud, T. A. Savas, H. I. Smith, W. Schwarzacher, F. M. Ross, M. Redjdal and F. B. Humphrey, “Micromagnetic behavior of electrodeposited cylinder arrays,” Phys. Rev. B 65, 144417 (2002)
[4.30] E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu and F. Schuth, “Exchange anisotropy in nanocasted Co3O4 nanowires,” Nano. Lett. 6, 2977-2981 (2006)
[4.31] L. Néel, in Low Temperature Physics, edited by C. DeWitt, B. Dreyfus, and P. D. de Gennes (Gorden and Breach, New York, 1962), pp. 413
[4.32] D. Shinoda and S. Asanabe, “Magnetic properties of silicides of iron group transition elements,” J. Phys. Soc. Jpn. 21, 555 (1996)
[4.33] K. Seo, K. S. K. Varadwaj, P. Mohanty, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Magnetic properties of single-crystalline CoSi nanowires,” Nano Lett. 7, 1240-1245 (2007)
[4.34] K. Seo, S. Lee, H. Yoon, J. In, K. S. K. Varadwaj, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Composition-tuned ConSi nanowires: Location-selective simultaneous growth along temperature radient,” ACS Nano 3, 1145-1150 (2009)
[4.35] T. C. Hou, Y. H. Han, S. C. Lo, C. T. Lee, H. Ouyang and L. J. Chen, “Room-temperature ferromagnetism in CrSi2(core)/SiO2(shell) semiconducting nanocables,” Appl. Phy. Lett. 98, 193104 (2011)
[4.36] K. Seo, H. Yoon, S. W. Ryu, S. Lee, Y. Jo, M. H. Jung, J. Kim, Y. K. Choi and B. Kim, “Itinerant helimagnetic single-crystalline MnSi nanowires,” ACS Nano 4, 2569-2576 (2010)
[4.37] S. Hung, T. T. Wang, L. Chu and L. Chen, “Orientation-dependent room-temperature ferromagnetism of FeSi nanowires and applications in nonvolatile memory devices,” J. Phys. Chem. C 115, 15592-15597 (2011)
[4.38] M. H. Hung, C. Y. Wang, J. Tang, C. C. Lin, T. C. Hou, X. Jiang, K. L. Wang and L. J. Chen, “Free-standing and single-crystalline Fe1-xMnxSi nanowires with room-temperature ferromagnetism and excellent magnetic response,” Acs Nano 6, 4884-4891 (2012)
[4.39] J. In, K. S. K. Varadwaj, K. Seo, S. Lee, Y. Jo, M. H. Jung, J. Kim and B. Kim, “Single-crystalline ferromagnetic Fe1-xCoxSi nanowires,” J. Phys. Chem. C 112, 4728-4275 (2008)
[4.40] C. Y. Chen, Y. K. Lin, C. W. Hsu, C. Y. Wang, Y. L. Chueh, L. J. Chen, S. C. Lo and L. J. Chou, “Coaxial metal-silicide Ni2Si/C54-TiSi2 nanowires,” Nano Lett. 12, 2254-2259 (2012)
Chapter 5 Enhanced Thermoelectric Properties and Mechanical Properties of Single-crystalline Chromium Disilicide Nanowires
[5.1] R. Venkatasubramanian, E. Siivola, T. Colpitts and O'Quinn B, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413, 597-602 (2001)
[5.2] D. M. Rowe, 1994 CRC Handbook of Thermoelectrics; CRC Press: Boca Raton, FL. We are not able to distinguish difference between VR and VS by only applying a constant current due to a vague boundary between them on voltage vs. time diagram
[5.3] V. E. Borisenko, 2000 Ed. Semiconducting Silicides; Springer: Berlin
[5.4] L. J. Chen, “Metal silicides: An integral part of microelectronics,” JOM 57(9) 24-31 (2005)
[5.5] D. Leong, M. Harry, K. J. Reeson and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 m,” Nature 387, 686-688 (1997)
[5.6] I. Nishida, “The crystal growth and thermoelectric properties of chromium disilicide,” J. Mater. Sci. 7, 1119-1124 (1972)
[5.7] F. Y. Shiau, H. C. Cheng and L. J. Chen, “Epitaxial growth of CrSi2 on (111)Si,” Appl. Phys. Lett. 45, 524-526 (1984)
[5.8] M. T. Chang, C. Y. Chen, L. J. Chou and L. J. Chen, “Core−shell chromium silicide−silicon nanopillars: A contact material for future nanosystems,”ACS NANO 3, 3776-3780 (2009)
[5.9] L. D. Hicks and M. S. Dresselhaus, “Thermoelectric figure of merit of a one-dimensional conductor,” Phys. Rev. B 47, 16631-16634 (1993)
[5.10] L. D. Hicks and M. S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev. B 47, 12727-1271 (1993)
[5.11] D. Li, Y. Wu, B. Kim, L. Shi, P. Yang and A. Majumdar, “Thermal conductivity of individual silicon nanowires,” Appl. Phys. Lett. 83, 2934-2936 (2003)
[5.12] M. N. Ou, T. J. Yang, S. R. Harutyunyan, Y. Y. Chen, C. D. Chen and S. J. Lai, “Electrical and thermal transport in single nickel nanowire,” Appl. Phys. Lett. 92, 063101 (2008)
[5.13] Y. C. Chang, Y. H. Liaw, Y. S. Huang, T. Hsu, C. S. Chang and T. T. Tsong, “In situ tailoring and manipulation of carbon nanotubes,” Small 4, 2195-2198 (2008)
[5.14] S. C. Wang, Y. C. Chang, D. H. Lien, T. Hsu and C. S. Chang, “Resonance frequency shift of a carbon nanotube with a silver nanoparticle adsorbed at various positions,” Appl. Phys. Lett. 97, 133105 (2010)
[5.15] J. R. Szczech, A. L. Schmitt, M. J. Bierman and S. Jin, “Single-crystal semiconducting chromium disilicide nanowires synthesized via chemical vapor transport,” Chem. Mater. 19, 3238-3243 (2007)
[5.16] Y. Xia, P. Yang, Y. Sun, B. Mayers, B. Gates, Y. Yin, F. Kim and H. Yan, “One-dimensional nanostructures: Synthesis, characterization, and applications,” Adv. Mater. 15, 353-389 (2003)
[5.17] K. Y. Seo, K. S. Varadwaj, D. Y. Cha, J. H. In, Y. J. Kim, J. G. Park and B. S. Kim, “Synthesis and electrical properties of single crystalline CrSi2 nanowires,” J. Phys. Chem. C 111, 9072-9076 (2007)
[5.18] J. H. He, P. H. Chang, C. Y. Chen and K. T. Tsai, “Electrical and optoelectronic characterization of a ZnO nanowire contacted by focused-ion-beam-deposited Pt,” Nanotechnology 20, 135701 (2009)
[5.19] A. I. Hochbaum, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature 451, 163-167 (2008)
[5.20] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu ,W. A. Goddard III and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature 451, 168-171 (2008)
[5.21] Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song and P. Yang, “Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties,” Chem. Eur. J. 8, 1260-1268 (2002)
[5.22] F. Zhou, J. Szczech, M. T. Pettes, A. L. Moore, S. Jin and L. Shi, “Determination of transport properties in chromium disilicide nanowires via combined thermoelectric and structural characterizations,” Nano Lett. 7, 1649-1654 (2007)
[5.23] Y. L. Chueh, L. J. Chou, J. Song and Z. L. Wang, “Mechanical and magnetic properties of Ni-doped metallic TaSi2 nanowires,” Nanotechnology 18, 145604 (2007)
[5.24] C. L. Hsin, W. J. Mai, Y. D. Gu, Y. F. Gao, C. T. Huang, Y. Z. Liu, L. J. Chen and Z. L. Wang, “Elastic Properties and Buckling of Silicon Nanowires,” Adv. Mater. 20, 3919-3923 (2008)
[5.25] P. Poncharal, Z. L. Wang, D. Ugarte and W. A. de Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes,” Science 283, 1513-1516 (1999)
[5.26] Y. Huang, X. Bai and Y. Zhang, “In situ mechanical properties of individual ZnO nanowires and the mass measurement of nanoparticles,” J. Phys.: Condens. Matter 18, 179-184 (2006)
[5.27] L. Meirovich, 1986 Elements of Vibration Analysis (McGraw-Hill, New York, ed. 2)
[5.28] C. Zou, G. Jing, D. Yu, Y. Xue and H. Duan, “Mechanical properties of TiSi2 nanowires,” Physics Letters A 373, 2065-2070 (2009)
[5.29] E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science 277, 1971-1975 (1997)
[5.30] B. Wu, A. Heidelberg and J. J. Boland, “Mechanical properties of ultrahigh-strength gold nanowires,” Nat. Mater. 4, 525-529 (2005)
[5.31] C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu and Y. J. Yan, “Size dependence of Young’s modulus in ZnO nanowires,” Phys. Rev. Lett. 96, 075505 (2006)
[5.32] S. Cuenot, C. Fretigny, S. Demoustier-Champagne and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Phys. Rev. B 69, 165410 (2004)
[5.33] S. G. Nilsson, X. Borrise and L. Montelius, “Size effect on Young’s modulus of thin chromium cantilevers,” Appl. Phys. Lett. 85, 3555-3557 (2004)
[5.34] X. Li, T. Ono, Y. Wang and M. Esashi, “Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus,” Appl. Phys. Lett. 83, 3081-3083 (2003)
[5.35] J. H. Song, X. D. Wang, E. Riedo and Z. L. Wang, “Elastic property of vertically aligned nanowires,” Nano. Lett. 5, 1954-1958 (2005)
[5.36] C. Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzil, S. Evoy and J. E. Fischer “Diameter-dependent electromechanical properties of GaN nanowires,” Nono Lett. 6, 153-158 (2006)
[5.37] M. Tabib-Azar, M. Nassirou, R. Wang, S. Sharma, T. L. Kamins, M. S. Islam and R. S. Williams, “Mechanical properties of self-welded silicon nanobridges,” Appl. Phys. Lett. 87, 113102 (2005)
[5.38] S. Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gösele and C. Ballif, “Measurement of the bending strength of vapor−liquid−solid grown silicon nanowires,” Nano Lett. 6, 622-625 (2006)
Chapter 6 Nanogenerator Based on Zinc Blende CdTe Micro/Nanowires
[6.1] Z. L. Wang, “Towards self-powered nanosystems: From nanogenerators to nanopiezotronics,” Adv. Funct. Mater. 18, 3553-3567 (2008)
[6.2] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449, 885-890 (2007)
[6.3] Y. Yang, W. Guo, K. C. Pradel, G. Zhu, Y. Zhou, Y. Zhang, Y. Hu, L. Lin and Z. L. Wang, “Pyroelectric nanogenerators for harvesting thermoelectric energy,” Nano Lett. 12, 2833-2838 (2012)
[6.4] C. L. Sun, J. Shi, D. J. Bayerl and X. D. Wang, “PVDF microbelts for harvesting energy from respiration,” Energy Environ. Sci. 4, 4508-4512 (2011)
[6.5] Z. T. Li and Z. L. Wang, “Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor,” Adv. Mater. 23, 84-89 (2011)
[6.6] Y. Hu, Y. Zhang, C. Xu, G. Zhu and Z. L. Wang, “High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display,” Nano Lett. 10, 5025-5031 (2010)
[6.7] Z. L. Wang, “Self-powered nanosensors and nanosystems,” Adv. Mater. 24, 280-285 (2012)
[6.8] Z. L. Wang and J. H. Song, Science “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” 312, 242-246 (2006)
[6.9] X. D. Wang, J. H. Song, J. Liu and Z. L. Wang, “Direct-current nanogenerator driven by ultrasonic waves,” Science 316, 102-105 (2007)
[6.10] Y. Qin, X. D. Wang and Z. L. Wang, “Microfibre–nanowire hybrid structure for energy scavenging,” Nature 451, 809-813 (2008)
[6.11] R. Yang, Y. Qin, L. Dai and Z. L. Wang, “Power generation with laterally packaged piezoelectric fine wires,” Nature Nanotechnology 4, 34-39 (2009)
[6.12] X. D. Wang, “Piezoelectric nanogenerators—Harvesting ambient mechanical energy at the nanometer scale,” Nano Energy 1, 13-24 (2012)
[6.13] X. Wang, J. Song, F. Zhang, C. He, Z. Hu and Z. L. Wang, “Electricity generation based on one-dimensional roup-III nitride nanomaterials,” Adv. Mater. 22, 2155-2158 (20110)
[6.14] C. T. Huang, J. Song, C. M. Tsai, W. F. Lee, D. S. Lien, Z. Gao, Y. Hao, L. J. Chen and Z. L. Wang, “Single-InN-Nanowire nanogenerator with up to 1 V output voltage,”Adv. Mater. 22, 4008-4013 (2010)
[6.15] C. Y. Chen, T. H. Liu, Y. S. Zhou, Y. Zhang, Y. L. Chueh, Y. H. Chu, J. H. He and Z. L. Wang, “Electricity generation based on vertically aligned PbZr0.2Ti0.8O3 nanowire arrays,” Nano Energy 1, 424-428 (2012)
[6.16] J. M. Wu, C. Xu, Y. Zhang and Z. L. Wang, “Lead-free nanogenerator made from single ZnSnO3 microbelt,”Acs Nano 6, 4335-4340 (2012)
[6.17] W. I. Park, H. S. Kim, S. Y. Jang, J. Park, S. Y. Bae, M. Jung, H. Lee and J. Kim, “Transformation of ZnTe nanowires to CdTe nanowires through the formation of ZnCdTe–CdTe core–shell structure by vapor transport,” J. Mater. Chem. 18, 875-880 (2008)
[6.18] F. Jiang, J. Liu, Y. Li, L. Fan, Y. Ding and Y. Li, “Ultralong CdTe nanowires: Catalyst-free synthesis and high-yield transformation into core–shell heterostructures,” Adv. Funct. Mater. 22, 2402-2411 (2012)
[6.19] J. Britt and C. Ferekides, “Thin-film CdS/CdTe solar cell with 15.8% efficiency,” Appl. Phys. Lett. 62, 2851 (1993)
[6.20] C. C. Tu and L. Y. Lin, “High efficiency photodetectors fabricated by electrostatic layer-by-layer self-assembly of CdTe quantum dots,”Appl. Phys. Lett. 93, 163107 (2008)
[6.21] A. D. Corso, R. Resta and S. Baroni, “Nonlinear piezoelectricity in CdTe,” Phys. Rev. B 47, 16252-16256 (1993)
[6.22] P. S. Halasyamani and K. R. Poeppelmeier, “Noncentrosymmetric oxides,” Chem. Mater. 10, 2753-2769 (1998)
[6.23] H. Gong, X. Hao, C. Gao, Y. Wu, J. Du, X. Xu and M. Jiang, “Facile aqueous synthesis and growth mechanism of CdTe nanorods,” Nanotechnology 19, 445603 (2008)
[6.24] Y. F. Lin, J. Song, Y. Ding, S. Y. Lu, and Z. L. Wang, “Piezoelectric nanogenerator using CdS nanowires,” Appl. Phys. Lett. 92, 022105 (2008)
[6.25] T. C. Hou, Y. Yang, Z. H. Lin, Y. Ding, C. Park, K.C. Pradel, L. J. Chen and Z. L. Wang, “Nanogenerator based on zinc blende CdTe micro/nanowiwres,” Nano Energy, in press, DOI: 10.1016/j.nanoen.2012.11.004 (2012)
Chapter 7 Future Prospects
[7.1] J. Zhou, Y. Gu, p. Fei, Y. Gao, R. Yang, G. Bao and Z. L. Wang, “Flexible piezotronic strain sensor,” Nano. Lett. 8, 3035-3040 (2008)
[7.2] J. M. Wu, C. Y. Chen, Y. Zang, K. H. Chen, Y. Yang, Y. Hu, J. H. He and Z. L. Wang, “Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire,” Acs Nano 6, 4369-4374 (2012)
[7.3] J. M. Wu, C. Xu, Y. Zhang, Y. Yang, Y. Zhou and Z. L. Wang, ”Flexible and transparent nanogenerators based on a composite of lead-free ZnSnO3 triangular-belts,” Adv. Mater. 24, 6094-6099 (2012)
[7.4] A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon and W. V. Schalkwijk, “Nanostructured materials for advanced energy conversion and storage devices,” Nat. Mater. 4 ,366-377 (2005)
[7.5] Z. L. Wang, “Self-powered nanosensors and nanosystems,” Adv. Mater. 24, 280-285 (2012)
[7.6] Z. L. Wang, “Self-powered nanotech” Sci. Am. 298, 82-87 (2008)
[7.7] F. R. Fan, Z. Q. Tian and Z. L. Wang, “Flexible triboelectric generator,” Nano Energy 1, 328-334 (2012)
[7.8] F. R. Fan, L. Lin, G. Zhu, W. Wu, R. Zhang and Z. L. Wang, “Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic film,” Nano Lett. 12, 3109-3114 (2012)
[7.9] G. Zhu, C. F. Pan, W. X. Guo, C. Y. Chen, Y. S. Zhou, R. M. Yu and Z. L. Wang, “Triboelectric-generator-driven pulse electrodeposition for micorpatterning,” Nano Lett. 12, 4960-4965 (2012)
[7.10] S. Wang, L. Long and Z. L. Wang, “Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics,” Nano Lett. 12, 6339-6346 (2012)
[7.11] J. Zhong, Q. Zhong, F. Fan, Y. Zhang, S. Wang, B. Hu, Z. L. Wang and J. Zhou, “Finger typing driven triboleectric nanogenerator and its use for instantaneously lighting up LEDs,” Nano Energy 2012, in press, DOI: 10.1016/j.nanoen.2012.11.015 (2012)
[7.12] Y. Yang, H. Zhang, S. Lee, D. Kim, W. Hwang and Z. L. Wang, “Hybrid energy cell for degradation of methyl orange by self-powered electrocatalytic oxidation,” Nano Lett. in press, DOI: 10.1021/nl3046188 (2013)