簡易檢索 / 詳目顯示

研究生: 吳迪
Wu, Di.
論文名稱: 鋁摻雜二氧化鉿鐵電材料金氧半電晶體之製作與特性研究
Fabrication and Characteristics of Al-doped HfO2 based Ferroelectric MOSFETs
指導教授: 徐永珍
Hsu, Yung-Jane.
口試委員: 江雨龍
Jiang, Yeu-Long.
蔡哲正
Tsai, Cho-Jen.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 68
中文關鍵詞: 鐵電次臨界擺幅非揮發性記憶體
外文關鍵詞: ferroelectric, S.S., NVM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 次臨界擺幅(Subthreshold Swing,S.S.)是衡量元件開關特性的重要參數。因此,在現如今的半導體領域,如何減小電晶體的S.S.是一個很重要的議題。傳統的金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field Effect Transistor , MOSFET)其S.S.被限制在60mV/dec。然而,使用鐵電材料作為閘極氧化層的電晶體,由於鐵電材料內部存在極化的現象,會使得電晶體的S.S.<60mV/dec,即出現所謂的“負電容”現象。除此之外,由於鐵電材料的極化在閘極電壓撤銷後仍然存在,故鐵電材料電晶體還具有非揮發性記憶體(Non-Volatile Memory, NVM)特性。
    本文主要以鋁摻雜二氧化鉿(Al-doped HfO2, Al-HfO2)為鐵電材料,SiO2作為介面層,通過實驗製作不同厚度鐵電材料、不同厚度介面層的金屬-鐵電層-絕緣層-半導體(Metal-Ferroelectric-Insulator-Semiconductor, MFIS)結構鐵電材料電晶體,探究鐵電材料電晶體/記憶體的特性以及不同介面層厚度、不同鐵電層厚度對電晶體特性的影響。通過引入鐵電材料,元件的S.S.甚至可以達到27mV/dec。另外,本文也驗證了當Al-HfO2厚度減小到8nm仍具備鐵電特性。


    Subthreshold swing (S.S.) plays an important role in the characteristics of MOSFET’s, so how to achieve a lower S.S. is a big issue in today’s semiconductor industry. The value of S.S. has been restricted by transistor physics to 60 mV/dec in traditional MOSFET’s. However, due to the polarization characteristic of ferroelectric materials, S.S.<60 mV/dec can be obtained while using ferroelectric materials as gate oxide, which is called "Negative Capacitance." Besides, since the polarization of dipoles still exists when gate voltage is off, ferroelectric transistors can be used as non-volatile memories.
    MOSFET’s with Al-doped HfO2-based ferroelectric material was studied in this thesis. Metal-Ferroelectric-Insulator-Semiconductor (MFIS) transistors with various ferroelectric-layer thicknesses and various interface-layer thicknesses were fabricated to figure out how thickness can affect the characteristics of ferroelectric transistors or memories. In this thesis, S.S.=27mV/dec was achieved while ferroelectric material was introduced into MOSFET. Besides, ferroelectric characteristic can still be observed in 8 nm thick Al-HfO2 layer.

    目錄 摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 表目錄 X 第一章 序論 1 1.1研究背景與發展現況 1 1.2研究動機 4 1.3論文章節架構 5 第二章 鐵電特性與鐵電材料電晶體原理 6 2.1鐵電材料特性 6 2.1.1極化(polarization) 6 2.1.2傳統鐵電材料 8 2.1.3摻雜的二氧化鉿 10 2.2鐵電材料電晶體工作原理 12 2.2.1 鐵電材料電晶體負電容的工作原理 12 2.2.2鐵電材料非揮發性記憶體工作原理 14 2.3鐵電材料非揮發性記憶體特性 16 2.3.1記憶窗口(memory window) 16 2.3.2耐久力(endurance) 16 2.3.3電荷保持力(retention) 19 第三章 元件結構與製程步驟 24 3.1元件結構 24 3.2重要製程參數 25 3.2.1原子層沉積系統 25 3.2.2熱氧化與化學氧化 26 3.2.3快速熱退火 27 3.3製程步驟 28 3.3.1 準備工作 28 3.3.2 晶圓清洗 28 3.3.3 介面層SiO2的生長 29 3.3.4 鐵電層HfO2的生長 29 3.3.5 金屬閘電極的生長 29 3.3.6 閘極、源極以及汲極區域的定義 29 3.3.7 接觸電極的沉積 30 3.3.8 隔絕氧化物的生長 30 3.3.9 連接金屬的沉積 30 3.3.10 金屬燒結 30 3.4 光罩製作 31 3.4.1 電晶體光罩圖樣 31 3.4.2 電容光罩圖樣 33 第四章 量測與討論 36 4.1 量測儀器介紹 36 4.2 量測方法 37 4.2.1 臨界電壓(Vth)的量測 37 4.2.2 次臨界擺幅(S.S.)的量測 38 4.2.3 開關電流比(on-off ratio)的量測 38 4.2.4 記憶窗口(MW)的量測 38 4.3 量測結果與分析 39 4.3.1 基本電性分析 39 4.3.2 S.S.小於60mv/dec情況分析 49 4.3.3 TEM結果分析 56 4.3.4 記憶體特性分析 62 第五章 結論 65 參考文獻 66

    [1] J. Zhou et al., "Ferroelectric HfZrOx Ge and GeSn PMOSFETs with Sub-60
    mV/decade subthreshold swing, negligible hysteresis, and improved Ids," 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, 2016, pp. 12.2.1-12.2.4.
    [2] Y. C. Chiu, C. H. Cheng, C. Y. Chang, M. H. Lee, H. H. Hsu and S. S. Yen,
    "Low power 1T DRAM/NVM versatile memory featuring steep sub-60-mV/decade operation, fast 20-ns speed, and robust 85°C-extrapolated 1016 endurance," 2015 Symposium on VLSI Technology (VLSI Technology), Kyoto, 2015, pp. T184-T185.
    [3] E. Yurchuk et al., "HfO2-Based Ferroelectric Field-Effect Transistors with 260
    nm Channel Length and Long Data Retention," 2012 4th IEEE International Memory Workshop, Milan, 2012, pp. 1-4.
    [4] J. Muller, T. S. Boscke, U. Schroder, R. Hoffmann, T. Mikolajick and L. Frey,
    "Nanosecond Polarization Switching and Long Retention in a Novel MFIS-FET Based on Ferroelectric HfO2," in IEEE Electron Device Letters, 2012, vol. 33, no. 2, pp. 185-187.
    [5] H.Kohlstedt et al. "Current status and challenges of ferroelectric memory
    devices, "Microelectronic Engineering, 2005, vol.80, pp.396-304.
    [6] N. Gong and T. P. Ma, "Why Is FE–HfO2 More Suitable Than PZT or SBT for
    Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective," in IEEE Electron Device Letters, 2016, vol. 37, no. 9, pp. 1123-1126.
    [7] J. Valasek, "Piezo-Electric and Allied Phenomena in Rochelle Salt," Phys. Rev.
    , 1920, pp.1-16.
    [8] M. Dawber, K. M. Rabe and J. F. Scott, "Physics of thin-film ferroelectric
    oxides," Rev. Mod. Phys., 2005, vol.77, pp.1083-1130.
    [9] Akira Onodera, Masanori Fukunaga and Masaki Takesada, "Ferroelectric
    Instability and Dimensionality in Bi-Layered Perovskites and Thin Films, "
    Advances in Condensed Matter Physics, 2012, vol.2012, article ID 714625.
    [10] M. H. Park et al."Ferroelectricity and Antiferroelectricity of Doped Thin HfO2-
    Based Films," Adv. Mater., 2015, vol.27, pp.1811–1831.
    [11] S. Mueller et al. "Incipient Ferroelectricity in Al-Doped HfO2 Thin Films,"
    Adv. Funct .Mater., 2012, pp. 2412–2417.
    [12] M. H. Lee et al., "Ferroelectricity of HfZrO2 in Energy Landscape With
    Surface Potential Gain for Low-Power Steep-Slope Transistors," in IEEE Journal of the Electron Devices Society, 2015, vol. 3, no. 4, pp. 377-381.
    [13] Gustau Catalan et al., "Ferroelectrics: Negative capacitance detected,"
    Nature Materials, 2015, pp.137–139.
    [14] E. Yurchuk et al., "Charge-Trapping Phenomena in HfO2-Based FeFET-Type
    Nonvolatile Memories," in IEEE Transactions on Electron Devices, 2016, vol. 63, no. 9, pp. 3501-3507.
    [15] E. Yurchuk et al., "Impact of Scaling on the Performance of HfO2-Based
    Ferroelectric Field Effect Transistors," in IEEE Transactions on Electron Devices, 2014, vol. 61, no. 11, pp. 3699-3706.
    [16] E. Yurchuk et al., "Origin of the endurance degradation in the novel HfO2-
    based 1T ferroelectric non-volatile memories," 2014 IEEE International Reliability Physics Symposium, Waikoloa, HI, 2014, pp. 2E.5.1-2E.5.5.
    [17] Johannes Müller, Patrick Polakowski, Stefan Müller, and Thomas Mikolajick,
    "Ferroelectric Hafnium Oxide Based Materials and Devices: Assessment of Current Status and Future Prospects," Electrochemical Society Transactions, 2014, pp.159-168.
    [18] T. P. Ma and Jin-Ping Han, "Why is nonvolatile ferroelectric memory field-
    effect transistor still elusive? ," in IEEE Electron Device Letters, 2002, vol. 23, no. 7, pp. 386-388.
    [19] N. Gong and T. P. Ma, "Why Is FE–HfO2 More Suitable Than PZT or SBT for
    Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective," in IEEE Electron Device Letters, 2016, vol. 37, no. 9, pp. 1123-1126.
    [20] 朱冠宇,劉謙,魏永泰,"低功耗綠能電晶體之陡峭次臨界斜率元件, "奈
    米通訊,vol. 22, No.1, pp.8-12.
    [21] Raheela Rasool et al, "Gate Leakage Current Modeling in Ferroelectric FET, "
    Physics of Semiconductor Devices, 2013, pp. 247-250

    QR CODE