簡易檢索 / 詳目顯示

研究生: 李應揚
Li, Ying-Yang
論文名稱: 利用廢稻稈合成碳纖維及碳包覆結構設計提升廢料矽於鋰離子電池負極之電化學性能
Enhancing Electrochemical Performance of Silicon Waste through Carbon Coating and Biomass-derived CNF Modified Structure for Lithium-ion Battery Anode
指導教授: 林姿瑩
Lin, Tzu-Ying
杜正恭
Duh, Jenq-Gong
口試委員: 吳芳賓
Wu, Fan-Bean
蕭立殷
Hsiao, Li-Yin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 98
中文關鍵詞: 鋰離子電池矽負極材料廢料矽回收植物廢棄物回收矽碳複合材料
外文關鍵詞: Lithium-ion battery, Silicon anode material, Waste silicon recycling, Biomass recycling, Silicon/carbon composite
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將太陽能電池產業或是半導體工業生產過程中的廢料矽加以回收並純化,透過碳包覆手法並和廢稻稈合成出的奈米碳纖維經由冷凍乾燥及鍛燒形成矽碳複合材料,以作為鋰離子電池中的負極材料。此矽碳複合材料採用碳包覆手法以減緩矽在充放電過程中產生的劇烈體積變化及電性衰退,並透過冷凍乾燥使碳纖維和廢料矽形成高比表面積的3D結構,並加強活物跟黏結劑之間的連結,進一步防止矽在充放電循環過程中因體積膨脹收縮效應導致電極結構崩壞,同時碳結構也能提升整體電極的導電率。
    由於碳包覆及結構設計,廢料矽/碳複合材料顯現出強化的電化學性能表現,在循環測試中經100圈充放電後仍擁有1000 mAh g-1的電容量,在不同的充放電速率測試下也顯現出較好的導電性能以及較高的可逆電容量,後續廢料矽和廢咖啡渣、廢稻桿形成的複合材料也展現優異的成果。總之,此研究展現廢料矽和生物碳形成的複合材料可改善並提升電池性能,同時也減輕昔日工業為環境帶來的負擔,為鋰離子電池負極材料開闢一條新蹊徑。


    The waste Si produced in solar and semiconductor industries is a sustainable source for anode materials as Silicon (Si) shows a superior theoretical capacity than other anode materials. However, the serious volume variation of Si during charging and discharging process causes particle pulverization and subsequently rapid capacity fading. In this study, silicon/carbon composite formation is introduced to solve the critical issues of Si-based anodes. The composite was produced with recycled Si powder, carbon source, and CNF derived from waste rice straw via freeze-drying method and calcination. In the cyclic test, Si coated with carbon layer and added with 1wt% CNF showed an enhanced performance of 3091mAh g-1 capacity in the first cycle and 1079mAh g-1 capacity after 100 cycles at the current density of 0.5A g-1 due to the stable and conductive structure. SEM images of before and after cycling also show that the composite structure can mitigate the crack formation on the electrode during cycling. These enhanced results indicate that carbon layer and CNF act as a protective layer and buffer matrix to alleviate the volume change of Si. In addition, the increased surface area by CNF offers more sites for binder to connect active materials and conductive materials together easily. The composite materials formed by subsequent waste silicon, waste coffee grounds, and waste rice straw also showed excellent results. In conclusion, the strategies enhance the stability of electrode and the electrochemical performance of waste Si, providing a novel method to obtain high-energy density anodes for LIBs.

    摘要................................................................3 Abstract............................................................4 Chapter 1 Introduction.............................................12 1.1 Background.....................................................12 1.2 Motivations and Objectives in This Study.......................13 Chapter 2 Literature Survey........................................16 2.1 Introduction of Lithium-ion Battery............................16 2.1.1 Evolution of Lithium-ion Battery.............................16 2.1.2 The Reaction Mechanism of LIBs...............................21 2.1.3 Evolution of Anode Materials.................................25 2.2 Silicon-based Anode Materials..................................30 2.2.1 Basic Concepts of Si-based Anode.............................30 2.2.2 Silicon Waste Recycling......................................36 2.2.3 Particle Size Effects of Si-based anode......................41 2.3 Agricultural Waste Carbon Material.............................43 2.3.1 Biomass Introduction.........................................43 2.3.2 Cellulose Derived Carbon Nano-fiber..........................46 2.3.3 Waste Coffee Grounds Derived Bio-mass Carbon.................51 2.4 Modified Strategies for Si-based anode.........................53 2.4.1 Overview of Modified Strategies..............................53 2.4.2 Surface Modification and Architectural Design for Si-based anode..............................................................55 Chapter 3 Experimental Design......................................63 3.1 Materials Preparation and Synthesis............................63 3.1.1 Waste Silicon from Semiconductor Industry....................63 3.1.2 Synthesis of Cellulose Nanofiber.............................63 3.1.3 Preparation of Waste Coffee Grounds..........................63 3.1.4 Synthesis of Si-C-CNF and Si-CWC-CNF Composites..............64 3.2 Characterization and Analysis..................................65 3.2.2 Morphological Observation....................................65 3.3 Electrochemical Analysis.......................................65 3.3.1 Electrode Fabrication and Battery Assembly...................65 3.3.2 Cyclability and Rate Capability Measurement..................66 3.3.3 Cyclic Voltammetry (CV)......................................66 Chapter 4 Results and Discussion...................................68 4.1 Characterization and Analysis..................................68 4.2 Electrochemical Performance....................................75 4.3 Investigation of Si-CWC-CNF in Electrochemical Performance.....81 Conclusion.........................................................87 References.........................................................88

    1. Ellabban, O., Abu-Rub, H. and Blaabjerg, F. (2014) Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748-764.
    2. Rahman, F., Rehman, S. and Abdul-Majeed, M.A. (2012) Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia. Renewable and Sustainable Energy Reviews, 16, 274-283.
    3. Yang, Y., Bremner, S., Menictas, C. and Kay, M. (2018) Battery energy storage system size determination in renewable energy systems: A review. Renewable and Sustainable Energy Reviews, 91, 109-125.
    4. Tarascon, J.M. and Armand, M. (2001) Issues and challenges facing rechargeable lithium batteries. Nature, 414, 359-367.
    5. Heelan, J., Gratz, E., Zheng, Z., Wang, Q., Chen, M., Apelian, D. and Wang, Y. (2016) Current and Prospective Li-Ion Battery Recycling and Recovery Processes. Jom, 68, 2632-2638.
    6. Etacheri, V., Marom, R., Elazari, R., Salitra, G. and Aurbach, D. (2011) Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 4.
    7. Tarascon, J.M. (2010) Key challenges in future Li-battery research. Philos Trans A Math Phys Eng Sci, 368, 3227-3241.
    8. Nitta, N., Wu, F., Lee, J.T. and Yushin, G. (2015) Li-ion battery materials: present and future. Materials Today, 18, 252-264.
    9. Pereira-Nabais, C., Światowska, J., Chagnes, A., Ozanam, F., Gohier, A., Tran-Van, P., Cojocaru, C.-S., Cassir, M. and Marcus, P. (2013) Interphase chemistry of Si electrodes used as anodes in Li-ion batteries. Applied Surface Science, 266, 5-16.
    10. Su, X., Wu, Q., Li, J., Xiao, X., Lott, A., Lu, W., Sheldon, B.W. and Wu, J. (2014) Silicon-Based Nanomaterials for Lithium-Ion Batteries: A Review. Advanced Energy Materials, 4.
    11. Shen, X., Tian, Z., Fan, R., Shao, L., Zhang, D., Cao, G., Kou, L. and Bai, Y. (2018) Research progress on silicon/carbon composite anode materials for lithium-ion battery. Journal of Energy Chemistry, 27, 1067-1090.
    12. Yang, C.F., Hsu, H.P. and Lan, C.W. (2015) A rapid thermal process for silicon recycle and refining from cutting kerf-loss slurry waste. Separation and Purification Technology, 149, 38-46.
    13. Kong, J., Xing, P., Liu, Y., Wang, J., Jin, X., Feng, Z. and Luo, X. (2018) An Economical Approach for the Recycling of High-Purity Silicon from Diamond-Wire Saw Kerf Slurry Waste. Silicon, 11, 367-376.
    14. Bao, Q., Huang, Y.-H., Lan, C.-K., Chen, B.-H. and Duh, J.-G. (2015) Scalable Upcycling Silicon from Waste Slicing Sludge for High-performance Lithium-ion Battery Anodes. Electrochimica Acta, 173, 82-90.
    15. Chen, R.-C., Hsiao, L.-Y., Wu, C.-Y. and Duh, J.-G. (2019) Facile synthesizing silicon waste/carbon composites via rapid thermal process for lithium-ion battery anode. Journal of Alloys and Compounds, 791, 19-29.
    16. Wu, Z.-Y., Wu, C.-Y. and Duh, J.-G. (2021) Facile synthesis of boron-doped graphene-silicon conductive network composite from recycling silicon for Lithium-ion batteries anodes materials. Materials Letters, 296.
    17. Wang, K., Tan, Y., Li, P. and Wang, Y. (2021) Recycling Si waste cut from diamond wire into high performance porous Si@SiO2@C anodes for Li-ion battery. J Hazard Mater, 407, 124778.
    18. Liu, W., Xu, H., Qin, H., Lv, Y., Zhu, G., Lei, X., Lin, F., Zhang, Z. and Wang, L. (2019) Rapid coating of asphalt to prepare carbon-encapsulated composites of nano-silicon and graphite for lithium battery anodes. Journal of Materials Science, 55, 4382-4394.
    19. Hwang, C., Lee, K., Um, H.-D., Lee, Y., Seo, K. and Song, H.-K. (2017) Conductive and Porous Silicon Nanowire Anodes for Lithium Ion Batteries. Journal of The Electrochemical Society, 164, A1564-A1568.
    20. Shi, J., Jiang, X., Sun, J., Ban, B., Li, J. and Chen, J. (2021) A surface-engineering-assisted method to synthesize recycled silicon-based anodes with a uniform carbon shell-protective layer for lithium-ion batteries. J Colloid Interface Sci, 588, 737-748.
    21. Magasinski, A., Zdyrko, B., Kovalenko, I., Hertzberg, B., Burtovyy, R., Huebner, C.F., Fuller, T.F., Luzinov, I. and Yushin, G. (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces, 2, 3004-3010.
    22. Li, W., Li, M., Shi, J.A., Zhong, X., Gu, L. and Yu, Y. (2018) Carbon nanofiber interlayer: a highly effective strategy to stabilize silicon anodes for use in lithium-ion batteries. Nanoscale, 10, 12430-12435.
    23. Kumar, A., Prasada Rao, T., Jayakumar, O.D., Nazri, G.A., Naik, V.M. and Naik, R. (2018) Improved electrochemical performance of Li2FeSiO4/CNF/rGO nanocomposites for lithium ion batteries. Solid State Ionics, 325, 43-47.
    24. Ciurzyńska, A. and Lenart, A. (2011) Freeze-Drying - Application in Food Processing and Biotechnology - a Review. Polish Journal of Food and Nutrition Sciences, 61, 165-171.
    25. Biswas, M.M., Azim, M.S., Saha, T.K., Zobayer, U. and Urmi, M.C. (2013) Towards Implementation of Smart Grid: An Updated Review on Electrical Energy Storage Systems. Smart Grid and Renewable Energy, 04, 122-132.
    26. Tang, Y., Zhang, Y., Li, W., Ma, B. and Chen, X. (2015) Rational material design for ultrafast rechargeable lithium-ion batteries. Chem Soc Rev, 44, 5926-5940.
    27. Scrosati, B. and Garche, J. (2010) Lithium batteries: Status, prospects and future. Journal of Power Sources, 195, 2419-2430.
    28. Abens, S., Merz, W. and Walk, C. (1967) Development of high energy density primary batteries. National Aeronautics and Space Administration.
    29. Meyers, W.F., Simmons, John W. (1969) ELECTRIC CURRENT-PRODUCING CELL WITH ANHYDROUS ORGANIC LIQUID ELECTROLYTE. LIVINGSTON ELECTRONIC CORP, United States.
    30. Greatbatch, W., Lee, J.H., Mathias, W., Eldridge, M., Moser, J.R. and Schneider, A.A. (1971) The Solid-State Lithium Battery: A New Improved Chemical Power Source for Implantable Cardiac Pacemakers. IEEE Transactions on Biomedical Engineering, BME-18, 317-324.
    31. Whittingham, M.S. and Gamble, F.R. (1975) The lithium intercalates of the transition metal dichalcogenides. Materials Research Bulletin, 10, 363-371.
    32. Whittingham, M.S. (1977) Chalcogenide battery. [Li/LiClO/sub 4/ in tetrahydrofuran + dimethoxyethane/TiS/sub 2/ is preferred embodiment]. United States, Medium: X; Size: Pages: 8 2009-2012-2014.
    33. Mizushima, K., Jones, P.C., Wiseman, P.J. and Goodenough, J.B. (1980) LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15, 783-789.
    34. Lin, D., Liu, Y. and Cui, Y. (2017) Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol, 12, 194-206.
    35. Cheng, X.B., Zhang, R., Zhao, C.Z. and Zhang, Q. (2017) Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review. Chem Rev, 117, 10403-10473.
    36. Guerard, D. and Herold, A. (1975) Intercalation of lithium into graphite and other carbons. Carbon, 13, 337-345.
    37. Yazami, R. and Touzain, P. (1983) A reversible graphite-lithium negative electrode for electrochemical generators. Journal of Power Sources, 9, 365-371.
    38. Fong, R., von Sacken, U. and Dahn, J.R. (1990) Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells. Journal of The Electrochemical Society, 137, 2009-2013.
    39. Amine, K., Kanno, R. and Tzeng, Y. (2014) Rechargeable lithium batteries and beyond: Progress, challenges, and future directions. MRS Bulletin, 39, 395-401.
    40. Manthiram, A. (2017) An Outlook on Lithium Ion Battery Technology. ACS Cent Sci, 3, 1063-1069.
    41. Goodenough, J.B. and Park, K.S. (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc, 135, 1167-1176.
    42. Haregewoin, A.M., Wotango, A.S. and Hwang, B.-J. (2016) Electrolyte additives for lithium ion battery electrodes: progress and perspectives. Energy Environ. Sci., 9, 1955-1988.
    43. Morris, M. (2012) COMPARISON OF RECHARGEABLE BATTERY TECHNOLOGIES. ASME Early Career Technical Journal, 11, 148-155.
    44. An, S.J., Li, J., Daniel, C., Mohanty, D., Nagpure, S. and Wood, D.L. (2016) The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 105, 52-76.
    45. Goodenough, J.B. and Kim, Y. (2009) Challenges for Rechargeable Li Batteries. Chemistry of Materials, 22, 587-603.
    46. Eom, K., Jung, J., Lee, J.T., Lair, V., Joshi, T., Lee, S.W., Lin, Z. and Fuller, T.F. (2015) Improved stability of nano-Sn electrode with high-quality nano-SEI formation for lithium ion battery. Nano Energy, 12, 314-321.
    47. Xu, J., Hu, Y., liu, T. and Wu, X. (2014) Improvement of cycle stability for high-voltage lithium-ion batteries by in-situ growth of SEI film on cathode. Nano Energy, 5, 67-73.
    48. Wang, F.-M., Cheng, H.-M., Wu, H.-C., Chu, S.-Y., Cheng, C.-S. and Yang, C.-R. (2009) Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries. Electrochimica Acta, 54, 3344-3351.
    49. Kamali, A. and Fray, D.J. (2010) Review on Carbon and Silicon Based Materials as Anode Materials for Lithium Ion Batteries. Journal of New Materials for Electrochemical Systems, 13, 147-160.
    50. Ni, W. and Shi, L. (2019) Review Article: Layer-structured carbonaceous materials for advanced Li-ion and Na-ion batteries: Beyond graphene. Journal of Vacuum Science & Technology A, 37.
    51. Goriparti, S., Miele, E., De Angelis, F., Di Fabrizio, E., Proietti Zaccaria, R. and Capiglia, C. (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 257, 421-443.
    52. Yu, S.H., Lee, S.H., Lee, D.J., Sung, Y.E. and Hyeon, T. (2016) Conversion Reaction-Based Oxide Nanomaterials for Lithium Ion Battery Anodes. Small, 12, 2146-2172.
    53. Winter, M. and Besenhard, J.O. (1999) Electrochemical lithiation of tin and tin-based intermetallics and composites. Electrochimica Acta, 45, 31-50.
    54. Zhang, W.-J. (2011) A review of the electrochemical performance of alloy anodes for lithium-ion batteries. Journal of Power Sources, 196, 13-24.
    55. Yang, J. (1999) Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries. Electrochemical and Solid-State Letters, 2, 161.
    56. Kim, H., Seo, M., Park, M.H. and Cho, J. (2010) A critical size of silicon nano-anodes for lithium rechargeable batteries. Angew Chem Int Ed Engl, 49, 2146-2149.
    57. Boukamp, B.A., Lesh, G.C. and Huggins, R.A. (2019) All‐Solid Lithium Electrodes with Mixed‐Conductor Matrix. Journal of The Electrochemical Society, 128, 725-729.
    58. Dimov, N., Kugino, S. and Yoshio, M. (2003) Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations. Electrochimica Acta, 48, 1579-1587.
    59. Anothumakkool, B., Holtstiege, F., Wiemers-Meyer, S., Nowak, S., Schappacher, F. and Winter, M. (2020) Electropolymerization Triggered in Situ Surface Modification of Electrode Interphases: Alleviating First-Cycle Lithium Loss in Silicon Anode Lithium-Ion Batteries. ACS Sustainable Chemistry & Engineering, 8, 12788-12798.
    60. Zhu, Y., Hu, W., Zhou, J., Cai, W., Lu, Y., Liang, J., Li, X., Zhu, S., Fu, Q. and Qian, Y. (2019) Prelithiated Surface Oxide Layer Enabled High-Performance Si Anode for Lithium Storage. ACS Appl Mater Interfaces, 11, 18305-18312.
    61. Xun, S., Song, X., Battaglia, V. and Liu, G. (2013) Conductive Polymer Binder-Enabled Cycling of Pure Tin Nanoparticle Composite Anode Electrodes for a Lithium-Ion Battery. Journal of The Electrochemical Society, 160, A849-A855.
    62. Kim, J.S., Choi, W., Cho, K.Y., Byun, D., Lim, J. and Lee, J.K. (2013) Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. Journal of Power Sources, 244, 521-526.
    63. Chen, J., Fan, X., Li, Q., Yang, H., Khoshi, M.R., Xu, Y., Hwang, S., Chen, L., Ji, X., Yang, C., He, H., Wang, C., Garfunkel, E., Su, D., Borodin, O. and Wang, C. (2020) Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nature Energy, 5, 386-397.
    64. Park, C.M., Kim, J.H., Kim, H. and Sohn, H.J. (2010) Li-alloy based anode materials for Li secondary batteries. Chem Soc Rev, 39, 3115-3141.
    65. Wen, C.J. and Huggins, R.A. (1981) Chemical diffusion in intermediate phases in the lithium-silicon system. Journal of Solid State Chemistry, 37, 271-278.
    66. Liang, S.-M., Taubert, F., Kozlov, A., Seidel, J., Mertens, F. and Schmid-Fetzer, R. (2017) Thermodynamics of Li-Si and Li-Si-H phase diagrams applied to hydrogen absorption and Li-ion batteries. Intermetallics, 81, 32-46.
    67. Chevrier, V.L. and Dahn, J.R. (2009) First Principles Model of Amorphous Silicon Lithiation. Journal of The Electrochemical Society, 156.
    68. Li, J. and Dahn, J.R. (2007) An In Situ X-Ray Diffraction Study of the Reaction of Li with Crystalline Si. Journal of The Electrochemical Society, 154.
    69. Ogata, K., Salager, E., Kerr, C.J., Fraser, A.E., Ducati, C., Morris, A.J., Hofmann, S. and Grey, C.P. (2014) Revealing lithium-silicide phase transformations in nano-structured silicon-based lithium ion batteries via in situ NMR spectroscopy. Nat Commun, 5, 3217.
    70. Kang, K., Lee, H.-S., Han, D.-W., Kim, G.-S., Lee, D., Lee, G., Kang, Y.-M. and Jo, M.-H. (2010) Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Applied Physics Letters, 96.
    71. Ma, D., Cao, Z. and Hu, A. (2014) Si-Based Anode Materials for Li-Ion Batteries: A Mini Review. Nanomicro Lett, 6, 347-358.
    72. Ryu, J.H., Kim, J.W., Sung, Y.-E. and Oh, S.M. (2004) Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochemical and Solid-State Letters, 7.
    73. Franco Gonzalez, A., Yang, N.-H. and Liu, R.-S. (2017) Silicon Anode Design for Lithium-Ion Batteries: Progress and Perspectives. The Journal of Physical Chemistry C, 121, 27775-27787.
    74. Chen, B.-H., Chang, C.-C. and Duh, J.-G. (2017) Carbon-Assisted Technique to Modify the Surface of Recycled Silicon/Silicon Carbide Composite for Lithium-Ion Batteries. Energy Technology, 5, 1415-1422.
    75. Ashuri, M., He, Q. and Shaw, L.L. (2016) Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter. Nanoscale, 8, 74-103.
    76. Wang, H., Ji, X., Chen, C., Xu, K. and Miao, L. (2013) Lithium diffusion in silicon and induced structure disorder: A molecular dynamics study. AIP Advances, 3.
    77. Park, M., Zhang, X., Chung, M., Less, G.B. and Sastry, A.M. (2010) A review of conduction phenomena in Li-ion batteries. Journal of Power Sources, 195, 7904-7929.
    78. Li, J., Lin, Y., Wang, F., Shi, J., Sun, J., Ban, B., Liu, G. and Chen, J. (2021) Progress in recovery and recycling of kerf loss silicon waste in photovoltaic industry. Separation and Purification Technology, 254.
    79. Drouiche, N., Cuellar, P., Kerkar, F., Medjahed, S., Boutouchent-Guerfi, N. and Ould Hamou, M. (2014) Recovery of solar grade silicon from kerf loss slurry waste. Renewable and Sustainable Energy Reviews, 32, 936-943.
    80. Sarti, D. and Einhaus, R. (2002) Silicon feedstock for the multi-crystalline photovoltaic industry. Solar Energy Materials and Solar Cells, 72, 27-40.
    81. Sopori, B., Devayajanam, S., Shet, S., Guhabiswas, D., Basnyat, P., Moutinho, H., Gedvilas, L., Jones, K., Binns, J. and Appel, J. (Year) Characterizing damage on Si wafer surfaces cut by slurry and diamond wire sawing. Conference 16-21 June 2013 Conference Year, 0945-0950.
    82. Sergiienko, S.A., Pogorelov, B.V. and Daniliuk, V.B. (2014) Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots. Separation and Purification Technology, 133, 16-21.
    83. Lee, W.-H., Hsu, C.-W., Ding, Y.-C. and Cheng, T.-W. (2017) A study on recovery of SiC from silicon wafer cutting slurry. Journal of Material Cycles and Waste Management, 20, 375-385.
    84. Wang, J.-M. and Wang, L.-Z. (2009) Experimental Study of a New Hydrocyclone for Multi-Density Particles Separation. Separation Science and Technology, 44, 2915-2927.
    85. Lin, Y.-C., Wang, T.-Y., Lan, C.-W. and Tai, C.Y. (2010) Recovery of silicon powder from kerf loss slurry by centrifugation. Powder Technology, 200, 216-223.
    86. Tomono, K., Furuya, H., Miyamoto, S., Okamura, Y., Sumimoto, M., Sakata, Y., Komatsu, R. and Nakayama, M. (2013) Investigations on hydrobromination of silicon in the presence of silicon carbide abrasives as a purification route of kerf loss waste. Separation and Purification Technology, 103, 109-113.
    87. Tsai, T.H., Shih, Y.P. and Wu, Y.F. (2013) Recycling silicon wire-saw slurries: separation of silicon and silicon carbide in a ramp settling tank under an applied electrical field. J Air Waste Manag Assoc, 63, 521-527.
    88. Tsai, T.-H. (2011) Modified sedimentation system for improving separation of silicon and silicon carbide in recycling of sawing waste. Separation and Purification Technology, 78, 16-20.
    89. Lin, Y.-C. and Tai, C.Y. (2010) Recovery of silicon powder from kerfs loss slurry using phase-transfer separation method. Separation and Purification Technology, 74, 170-177.
    90. Jang, H.D., Kim, H., Chang, H., Kim, J., Roh, K.M., Choi, J.H., Cho, B.G., Park, E., Kim, H., Luo, J. and Huang, J. (2015) Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries. Sci Rep, 5, 9431.
    91. Knotter, D.M. (2010) The Chemistry of Wet Cleaning. Handbook of Cleaning in Semiconductor Manufacturing, 39-94.
    92. Xu, Y., Yin, G., Ma, Y., Zuo, P. and Cheng, X. (2010) Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. Journal of Materials Chemistry, 20.
    93. Liu, N., Wu, H., McDowell, M.T., Yao, Y., Wang, C. and Cui, Y. (2012) A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett, 12, 3315-3321.
    94. Tian, H., Tan, X., Xin, F., Wang, C. and Han, W. (2015) Micro-sized nano-porous Si/C anodes for lithium ion batteries. Nano Energy, 11, 490-499.
    95. Sun, M., Ma, J., Xu, M., Yang, H., Zhang, J. and Wang, C. (2022) A Low-Cost SiO x /C@Graphite Composite Derived from Oat Husk as an Advanced Anode for High-Performance Lithium-Ion Batteries. ACS Omega, 7, 15123-15131.
    96. Szczech, J.R. and Jin, S. (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci., 4, 56-72.
    97. Liu, X.H., Zhong, L., Huang, S., Mao, S.X., Zhu, T. and Huang, J.Y. (2012) Size-Dependent Fracture of Silicon Nanoparticles During Lithiation. ACS Nano, 6, 1522-1531.
    98. Liu, Z., Chang, X., Wang, T., Li, W., Ju, H., Zheng, X., Wu, X., Wang, C., Zheng, J. and Li, X. (2017) Silica-Derived Hydrophobic Colloidal Nano-Si for Lithium-Ion Batteries. ACS Nano, 11, 6065-6073.
    99. Cho, J.H. and Picraux, S.T. (2013) Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett, 13, 5740-5747.
    100. Kovalenko, I., Zdyrko, B., Magasinski, A., Hertzberg, B., Milicev, Z., Burtovyy, R., Luzinov, I. and Yushin, G. (2011) A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries. Science, 334, 75-79.
    101. Baniasadi, H., Trifol, J., Ranta, A. and Seppälä, J. (2021) Exfoliated clay nanocomposites of renewable long-chain aliphatic polyamide through in-situ polymerization. Composites Part B: Engineering, 211.
    102. Lee, K., Shin, S., Degen, T., Lee, W. and Yoon, Y.S. (2017) In situ analysis of SnO2/Fe2O3/RGO to unravel the structural collapse mechanism and enhanced electrical conductivity for lithium-ion batteries. Nano Energy, 32, 397-407.
    103. Spahr, M.E., Goers, D., Leone, A., Stallone, S. and Grivei, E. (2011) Development of carbon conductive additives for advanced lithium ion batteries. Journal of Power Sources, 196, 3404-3413.
    104. Wu, Z.-S., Ren, W., Xu, L., Li, F. and Cheng, H.-M. (2011) Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries. ACS Nano, 5, 5463-5471.
    105. Ren, J., Ren, R.-P. and Lv, Y.-K. (2018) A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery. Chemical Engineering Journal, 353, 419-424.
    106. Hu, Z., Su, H., Zhou, M., Liu, J., Wan, Y., Hu, J. and Xu, Y. (2022) Lithiophilic Carbon Nanofiber/Graphene Nanosheet Composite Scaffold Prepared by a Scalable and Controllable Biofabrication Method for Ultrastable Dendrite-Free Lithium-Metal Anodes. Small, 18, e2104735.
    107. Trifol, J. and Moriana, R. (2022) Barrier packaging solutions from residual biomass: Synergetic properties of CNF and LCNF in films. Industrial Crops and Products, 177.
    108. Wang, Z., Shen, D., Wu, C. and Gu, S. (2018) State-of-the-art on the production and application of carbon nanomaterials from biomass. Green Chemistry, 20, 5031-5057.
    109. Wang, J., Nie, P., Ding, B., Dong, S., Hao, X., Dou, H. and Zhang, X. (2017) Biomass derived carbon for energy storage devices. Journal of Materials Chemistry A, 5, 2411-2428.
    110. Islam, M.A., Ong, H.L., Villagracia, A.R., A. Halim, K.A., Ganganboina, A.B. and Doong, R.-A. (2021) Biomass–derived cellulose nanofibrils membrane from rice straw as sustainable separator for high performance supercapacitor. Industrial Crops and Products, 170.
    111. Gómez-Urbano, J.L., Moreno-Fernández, G., Arnaiz, M., Ajuria, J., Rojo, T. and Carriazo, D. (2020) Graphene-coffee waste derived carbon composites as electrodes for optimized lithium ion capacitors. Carbon, 162, 273-282.
    112. Liu, S.-F., Kuo, C.-H., Lin, C.-C., Lin, H.-Y., Lu, C.-Z., Kang, J.-W., Fey, G.T.-K. and Chen, H.-Y. (2022) Biowaste-derived Si@SiOx/C anodes for sustainable lithium-ion batteries. Electrochimica Acta, 403.
    113. Hernández-Rentero, C., Córdoba, R., Moreno, N., Caballero, A., Morales, J., Olivares-Marín, M. and Gómez-Serrano, V. (2017) Low-cost disordered carbons for Li/S batteries: A high-performance carbon with dual porosity derived from cherry pits. Nano Research, 11, 89-100.
    114. Gu, X., Wang, Y., Lai, C., Qiu, J., Li, S., Hou, Y., Martens, W., Mahmood, N. and Zhang, S. (2014) Microporous bamboo biochar for lithium-sulfur batteries. Nano Research, 8, 129-139.
    115. Prakash Menon, M., Selvakumar, R., Suresh kumar, P. and Ramakrishna, S. (2017) Extraction and modification of cellulose nanofibers derived from biomass for environmental application. RSC Advances, 7, 42750-42773.
    116. Janissen, B. and Huynh, T. (2018) Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110-117.
    117. Li, W., Li, M., Adair, K.R., Sun, X. and Yu, Y. (2017) Carbon nanofiber-based nanostructures for lithium-ion and sodium-ion batteries. Journal of Materials Chemistry A, 5, 13882-13906.
    118. Trifol, J., Marin Quintero, D.C. and Moriana, R. (2021) Pine Cone Biorefinery: Integral Valorization of Residual Biomass into Lignocellulose Nanofibrils (LCNF)-Reinforced Composites for Packaging. ACS Sustainable Chemistry & Engineering, 9, 2180-2190.
    119. Chen, Y., Li, X., Park, K., Song, J., Hong, J., Zhou, L., Mai, Y.W., Huang, H. and Goodenough, J.B. (2013) Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J Am Chem Soc, 135, 16280-16283.
    120. Nam, W.L., Phang, X.Y., Su, M.H., Liew, R.K., Ma, N.L., Rosli, M. and Lam, S.S. (2018) Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus). Sci Total Environ, 624, 9-16.
    121. Lai, C., Zhou, Z., Zhang, L., Wang, X., Zhou, Q., Zhao, Y., Wang, Y., Wu, X.-F., Zhu, Z. and Fong, H. (2014) Free-standing and mechanically flexible mats consisting of electrospun carbon nanofibers made from a natural product of alkali lignin as binder-free electrodes for high-performance supercapacitors. Journal of Power Sources, 247, 134-141.
    122. Funke, A. and Ziegler, F. (2010) Hydrothermal carbonization of biomass: A summary and discussion of chemical mechanisms for process engineering. Biofuels, Bioproducts and Biorefining, 4, 160-177.
    123. Chen, W., Yu, H., Liu, Y., Chen, P., Zhang, M. and Hai, Y. (2011) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydrate Polymers, 83, 1804-1811.
    124. Azwar, E., Wan Mahari, W.A., Chuah, J.H., Vo, D.-V.N., Ma, N.L., Lam, W.H. and Lam, S.S. (2018) Transformation of biomass into carbon nanofiber for supercapacitor application – A review. International Journal of Hydrogen Energy, 43, 20811-20821.
    125. Wu, Z.Y., Li, C., Liang, H.W., Chen, J.F. and Yu, S.H. (2013) Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose. Angew Chem Int Ed Engl, 52, 2925-2929.
    126. Chen, L.F., Huang, Z.H., Liang, H.W., Guan, Q.F. and Yu, S.H. (2013) Bacterial-cellulose-derived carbon nanofiber@MnO(2) and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Adv Mater, 25, 4746-4752.
    127. Abe, K., Iwamoto, S. and Yano, H. (2007) Obtaining Cellulose Nanofibers with a Uniform Width of 15 nm from Wood. Biomacromolecules, 8, 3276-3278.
    128. Kamil, M., Ramadan, K.M., Olabi, A.G., Al-Ali, E.I., Ma, X. and Awad, O.I. (2020) Economic, technical, and environmental viability of biodiesel blends derived from coffee waste. Renewable Energy, 147, 1880-1894.
    129. Luna-Lama, F., Rodríguez-Padrón, D., Puente-Santiago, A.R., Muñoz-Batista, M.J., Caballero, A., Balu, A.M., Romero, A.A. and Luque, R. (2019) Non-porous carbonaceous materials derived from coffee waste grounds as highly sustainable anodes for lithium-ion batteries. Journal of Cleaner Production, 207, 411-417.
    130. Lee, W.J., Maiti, U.N., Lee, J.M., Lim, J., Han, T.H. and Kim, S.O. (2014) Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications. Chem Commun (Camb), 50, 6818-6830.
    131. Liu, N., Lu, Z., Zhao, J., McDowell, M.T., Lee, H.W., Zhao, W. and Cui, Y. (2014) A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat Nanotechnol, 9, 187-192.
    132. Lu, Z., Liu, N., Lee, H.-W., Zhao, J., Li, W., Li, Y. and Cui, Y. (2015) Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes. ACS Nano, 9, 2540-2547.
    133. Luo, L., Zhao, P., Yang, H., Liu, B., Zhang, J.G., Cui, Y., Yu, G., Zhang, S. and Wang, C.M. (2015) Surface Coating Constraint Induced Self-Discharging of Silicon Nanoparticles as Anodes for Lithium Ion Batteries. Nano Lett, 15, 7016-7022.
    134. Yi, R., Dai, F., Gordin, M.L., Chen, S. and Wang, D. (2013) Micro-sized Si-C Composite with Interconnected Nanoscale Building Blocks as High-Performance Anodes for Practical Application in Lithium-Ion Batteries. Advanced Energy Materials, 3, 295-300.
    135. Zhang, L., Liu, X., Zhao, Q., Dou, S., Liu, H., Huang, Y. and Hu, X. (2016) Si-containing precursors for Si-based anode materials of Li-ion batteries: A review. Energy Storage Materials, 4, 92-102.
    136. Zhang, L., Deng, J., Liu, L., Si, W., Oswald, S., Xi, L., Kundu, M., Ma, G., Gemming, T., Baunack, S., Ding, F., Yan, C. and Schmidt, O.G. (2014) Hierarchically designed SiOx/SiOy bilayer nanomembranes as stable anodes for lithium ion batteries. Adv Mater, 26, 4527-4532.
    137. Wu, H., Chan, G., Choi, J.W., Ryu, I., Yao, Y., McDowell, M.T., Lee, S.W., Jackson, A., Yang, Y., Hu, L. and Cui, Y. (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat Nanotechnol, 7, 310-315.
    138. Wu, C.-Y., Kuo, P.-H. and Duh, J.-G. (2021) Reviving of silicon waste with N-doped carbon core-shell structure prepared by vapor deposition polymerization of polypyrrole applied in lithium-ion battery. Surface and Coatings Technology, 421.
    139. Liu, H., Chen, T., Xu, Z., Liu, Z., Yang, J. and Chen, J. (2020) High-Safety and Long-Life Silicon-Based Lithium-Ion Batteries via a Multifunctional Binder. ACS Appl Mater Interfaces, 12, 54842-54850.
    140. Liang, J., Fan, Z., Chen, S., Zheng, S. and Wang, Z. (2021) A novel three-dimensional cross-linked net structure of submicron Si as high-performance anode for LIBs. Journal of Alloys and Compounds, 860.
    141. Hung, Y.-H., Liu, T.-Y. and Chen, H.-Y. (2019) Renewable Coffee Waste-Derived Porous Carbons as Anode Materials for High-Performance Sustainable Microbial Fuel Cells. ACS Sustainable Chemistry & Engineering, 7, 16991-16999.
    142. Chung, D.Y., Son, Y.J., Yoo, J.M., Kang, J.S., Ahn, C.Y., Park, S. and Sung, Y.E. (2017) Coffee Waste-Derived Hierarchical Porous Carbon as a Highly Active and Durable Electrocatalyst for Electrochemical Energy Applications. ACS Appl Mater Interfaces, 9, 41303-41313.
    143. Darjazi, H., Staffolani, A., Sbrascini, L., Bottoni, L., Tossici, R. and Nobili, F. (2020) Sustainable Anodes for Lithium- and Sodium-Ion Batteries Based on Coffee Ground-Derived Hard Carbon and Green Binders. Energies, 13.
    144. Shin, J.-H., Park, D.-H., Lee, W.-J., Moon, S.-H., Choi, J.-H., Kim, J.-H., Jang, J.-S., Kim, S.-B. and Park, K.-W. (2021) Coffee waste-derived one-step synthesis of a composite structure with Ge nanoparticles surrounded by amorphous carbon for Li-ion batteries. Journal of Alloys and Compounds, 889.
    145. Xu, Y., Zhu, Y. and Wang, C. (2014) Mesoporous carbon/silicon composite anodes with enhanced performance for lithium-ion batteries. J. Mater. Chem. A, 2, 9751-9757.
    146. Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Takeda, Y. and Yamamoto, O. (2010) A high performance silicon/carbon composite anode with carbon nanofiber for lithium-ion batteries. Journal of Power Sources, 195, 1720-1725.
    147. Zhang, A., Fang, X., Shen, C., Liu, Y. and Zhou, C. (2016) A carbon nanofiber network for stable lithium metal anodes with high Coulombic efficiency and long cycle life. Nano Research, 9, 3428-3436.

    QR CODE