研究生: |
劉家華 Liu, Jia Hua |
---|---|
論文名稱: |
抗菌胜肽m2163對人類大腸癌細胞SW480的細胞凋亡及壞死作用 Apoptotic and necrotic effects of antimicrobial peptide m2163 in human colorectal cancer cell SW480 |
指導教授: |
林志侯
Lin, Thy Hou |
口試委員: |
高茂傑
Kao, Mou Chieh 彭明德 Perng Ming Der |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2016 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 30 |
中文關鍵詞: | 抗菌胜肽 、大腸癌 、細胞凋亡 、細胞壞死 、流式細胞儀 、共軛焦顯微鏡 |
外文關鍵詞: | antimicrobial peptide, colorectal cancer, apoptosis, necrosis, flow cytometry, confocal microscope |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,可毒殺癌細胞而不傷害正常細胞的抗菌胜肽,其抗癌的潛力越來越受到重視與投入。本實驗室從Lactobacillus casei ATCC 334菌株的基因序列篩選出具有抗菌活性的胜肽m2163。在過去的研究發現,m2163可以抑制人類大腸癌細胞SW480生長,但其中的機制及路徑尚不清楚。本實驗關注於m2163對SW480細胞造成的細胞凋亡及細胞壞死現象,除了透過抑制細胞凋亡的caspases inhibitor Z-VAD-FMK和抑制細胞壞死的RIPK1 inhibitorNecrostain-1分析m2163對這兩種路徑的使用情形,也試著由此結果探討更多m2163殺害細胞的可能機制。實驗內容包括以MTT assay測試m2163對SW480的抑制效果,Annexin V-FITC/PI雙染實驗觀察細胞凋亡和壞死的現象,核酸染劑PI測試細胞膜通透性的改變,自由基指示劑DCFDA檢測活性氧類 (ROS) 的生成,螢光標記追蹤m2163在細胞中的位置。實驗結果確認m2163會促使SW480發生細胞凋亡及細胞壞死,且可能隨m2163使用劑量有比例上的變化,並推測m2163的作用機制裡有caspases和RIPK1相關以外的路徑存在。ROS的生成雖然可能幫助殺害細胞,但與細胞凋亡和壞死關係不明顯。m2163多與SW480細胞膜結合,胞內則尚無法辨別。
In recent years, the anticancer potential of antimicrobial peptides (AMPs), which exhibit toxicity toward eukaryotic cancer cells but not to normal mammalian cells, has received attention and investment. Previously, our laboratory screened a novel anticancer AMP named m2163 from Lactobacillus casei ATCC 334. M2163 was confirmed to suppress human colorectal cancer cell line SW480 growth, but the mechanism and pathway are not well understood. This study focuses on the apoptotic and necrotic effects of m2163 in SW480 cell. The caspases inhibitor Z-VAD-FMK as apoptosis inhibitor and RIPK1 inhibitor Necrostain-1 as necrosis inhibitor were used to analyze how m2163 utilize the two processes, and then also try to find out more possible anticancer mechanism of m2163. We used MTT assay to test the proliferation inhibition of m2163 in SW480 cell, Annexin V-FITC/PI double staining for observing induced apoptosis and necrosis, nucleic acid dye PI for testing the change of cell membrane permeability, free-radical indicator DCFDA for detecting the generation of ROS, fluorescein labeling for cellular localization. The experiment results revealed that m2163 can induce apoptosis and necrosis in SW480 cell and the proportion may vary with dosage. Furthermore, there are pathways not associated with caspases and RIPK1 in the anticancer mechanism of m2163. The generation of ROS may help killing cells, but the connection with apoptosis and necrosis is not obvious. M2163 generally attach on SW480 cell membrane. As for cell cytoplasm, it is not clear yet.
1. Reddy, K.V., R.D. Yedery, and C. Aranha, Antimicrobial peptides: premises and promises. Int J Antimicrob Agents, 2004. 24(6): p. 536-47.
2. Nissen-Meyer, J. and I.F. Nes, Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol, 1997. 167(2/3): p. 67-77.
3. Cleveland, J., et al., Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol, 2001. 71(1): p. 1-20.
4. Cotter, P.D., C. Hill, and R.P. Ross, Bacteriocins: developing innate immunity for food. Nat Rev Microbiol, 2005. 3(10): p. 777-88.
5. Garneau, S., N.I. Martin, and J.C. Vederas, Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie, 2002. 84(5-6): p. 577-92.
6. Holo, H., O. Nilssen, and I.F. Nes, Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol, 1991. 173(12): p. 3879-87.
7. Yeaman, M.R. and N.Y. Yount, Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev, 2003. 55(1): p. 27-55.
8. Hancock, R.E. and A. Rozek, Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett, 2002. 206(2): p. 143-9.
9. Hoskin, D.W. and A. Ramamoorthy, Studies on anticancer activities of antimicrobial peptides. Biochim Biophys Acta, 2008. 1778(2): p. 357-75.
10. Hengartner, M.O., The biochemistry of apoptosis. Nature, 2000. 407(6805): p. 770-6.
11. Goldstein, J.C., et al., The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol, 2000. 2(3): p. 156-62.
12. Vanlangenakker, N., et al., Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med, 2008. 8(3): p. 207-20.
13. Vanden Berghe, T., et al., Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol, 2014. 15(2): p. 135-47.
14. Su, L., et al., A plug release mechanism for membrane permeation by MLKL. Structure, 2014. 22(10): p. 1489-500.
15. Kuo, Y.C., et al., Characterization of putative class II bacteriocins identified from a non-bacteriocin-producing strain Lactobacillus casei ATCC 334. Appl Microbiol Biotechnol, 2013. 97(1): p. 237-46.
16. Hancock, R.E. and H.G. Sahl, Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol, 2006. 24(12): p. 1551-7.
17. Wang, K.R., et al., Novel mode of action of polybia-MPI, a novel antimicrobial peptide, in multi-drug resistant leukemic cells. Cancer Lett, 2009. 278(1): p. 65-72.
18. Clement, M.V. and S. Pervaiz, Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. Free Radic Res, 1999. 30(4): p. 247-52.
19. Hampton, M.B. and S. Orrenius, Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett, 1997. 414(3): p. 552-6.
20. Gaspar, D., A.S. Veiga, and M.A. Castanho, From antimicrobial to anticancer peptides. A review. Front Microbiol, 2013. 4: p. 294.