研究生: |
黃楷翔 Kai-Hsiang Huang |
---|---|
論文名稱: |
具備穩壓功能振盪器之鎖相迴路設計 A Supply-Noise-Insensitive PLL Design with A Supply Regulated VCO |
指導教授: |
黃柏鈞
Po-Chiun Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 鎖相迴路 、壓控振盪器 、抖動 、相位雜訊 、電源雜訊 、穩壓器 |
外文關鍵詞: | PLL, VCO, jitter, phase noise, supply noise, regulator |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鎖相迴路器已經被廣泛的應用在數位系統內以產生精準的時脈。時脈抖動是鎖相迴路設計重要的議題之ㄧ,因為時脈的抖動會限制數位系統所能操作的最高頻率。隨著製程的進步,電路的工作電壓逐漸下降,和鎖相迴路器整合在一起的數位電路也越來越多,如此會造成鎖相迴路器的電源線上來自數位電路的切換雜訊越來越大,使得鎖相迴路器的抖動效能容易被這些電源線上的雜訊所主宰。因此一個能抵抗電源雜訊的鎖相迴路設計是必要的。
除了電源雜訊的問題之外,壓控振盪器的頻率調整範圍、鎖相迴路的頻寬以及輸出時脈的抖動效能等常常是鎖相迴路設計的規格。這篇論文對鎖相迴路提出一個設計方法,使得鎖相迴路除了有能夠抵抗電源雜訊的優點之外,也能夠同時滿足這些規格。這個設計方法因為具有一般性,所以也適用在不同的規格上。
根據這個設計方法,一個鎖相迴路器以0.18微米的互補式金氧半導體製程製造,晶片面積約為 。當晶片的工作電壓在1.8伏時,量測到的鎖相迴路輸出頻率約為0.24GHz到2.4GHz。在頻率為2.4GHz時,整個晶片功率消耗約為18mW。當沒有外加雜訊在壓控振盪器的電源上時,輸出時脈的方均根抖動值約為時脈週期的1.3%。當外加一方波雜訊在壓控振盪器的電源線上時,2.4GHz的輸出時脈對電源雜訊的敏感度為1%的電源電壓變化會造成0.3%的時脈週期變化。
Phase locked-loops (PLLs) are widely used in digital systems to generate well-timed clocks.
Clock timing jitter is one of the most significant issues since any timing uncertainty limits the
speed of digital systems. Scaling trends will shrink supply voltage and induce more switching
noise from digital circuits to the power supply. The supply noise perturb the more sensitive
blocks, especially for VCO in a PLL, and degrade PLL jitter performance. Therefore, it is
desirable to design a VCO with good supply noise immunity.
VCO tuning range and PLL output jitter are two common specifications for PLL design. This
thesis proposes a design methodology for a supply-noise-insensitive PLL to meet VCO tuning
range and PLL jitter requirements. The proposed methodology is general thus it is flexible for
different applications.
Based on the proposed design flow, a phase-locked loop (PLL) has been fabricated in 0.18-um /
1.8V CMOS technology. Chip area of the core circuit is 0:18mm2. Measurement results show
that the PLL can generate clock signals ranging from 0.24GHz to 2.4GHz. Power consumption
is about 18mW at 2.4GHz. Under quiet supply, PLL output long-term RMS jitter is about 1.3%
UI over the tuning range. When a square wave noise is injected to VCO supply, PLL output
clock has sensitivity 0.3%-clock period / 1%-VDD at 2.4GHz.
[1] F. Herzel, B. Razavi, “A study of oscillator jitter due to supply and substrate noise,” IEEE
Trans. Circuits and Systems II, Vol. 46, pp. 56-62, Jan. 1999.
[2] A. Abidi, “Phase noise and jitter in CMOS ring oscillators,” IEEE J. Solid-State Circuits,
vol. 41, pp. 1803-1816, Aug. 2006.
[3] V. von Kaenel et al., “A 320MHz, 1.5mW @ 1.35V CMOS PLL for microprocessor
clock generation,” IEEE J. Solid-State Circuits, vol. 31, pp. 1715-1722, Nov. 1996.
[4] H. Ahn et al., “A low-jitter 1.9V CMOS PLL for UltraSPARC microprocessor applications,”
IEEE J. Solid-State Circuits, vol. 35, pp. 450-454, Mar. 2000.
[5] S. Sidiropoulos, M. Horowitz, “Adaptive bandwidth DLLs and PLLs using regulated
supply CMOS buffers,” in Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2000, pp. 124-
127.
[6] J. Ingino, “A 4GHz 40dB PSRR PLL for an SOC application,” in IEEE Int. Solid-State
Circuits Conf. Dig. Tech. Papers, pp. 392-393, Feb. 2001.
[7] M. Mansuri, Chih-Kong Ken Yang, “A low-power adaptive bandwidth and clock buffer
with supply-noise compensation,” IEEE J. Solid-State Circuits, vol. 38, pp. 1804-1812,
Nov. 2003.
[8] J. Maneatis, “Low-jitter process-independent DLL and PLL based on self-biased techniques,”
IEEE J. Solid-State Circuits, vol. 31, pp. 1723-1732, Nov. 1996.
[9] D. Badillo, “Comparison of contemporary CMOS ring oscillators,” in Symp. RFIC, Aug.
2004, pp. 281-284.
[10] J. McNeill, “Jitter in ring oscillators,” IEEE J. Solid-State Circuits, vol. 32, pp. 870-879,
June 1997.
[11] M. Mansuri, Chih-Kong Ken Yang, “Jitter optimization based on Phase-Locked Loop
design parameters,” IEEE J. Solid-State Circuits, vol. 37, pp. 1375-1382, Nov. 2002.
[12] M. Brownlee, K. Mayaram, “A 0.5-GHz to 2.5-GHz PLL with fully differential supply
regulated tuning,” IEEE J. Solid-State Circuits, vol. 41, pp. 2720-2728, Dec. 2006.
[13] E. Alon, M. Horowitz, “Replica compensated linear regulators for supply regulated
Phase-Locked Loops,” IEEE J. Solid-State Circuits, vol. 41, pp. 413-424, Feb. 2006.
[14] C. Liu, J. McNeill, “Jitter in oscillators with 1/f noise sources,” in Proc. ISCAS, May
2004, pp. 773-776.
[15] R. Navid, Thomas H. Lee, “Minimum achievable phase noise of RC oscillators, ” IEEE
J. Solid-State Circuits, vol. 34, pp. 630-637, Mar. 2005.
[16] A. Hajimiri, Thomas H. Lee, “Jitter and phase noise in ring oscillators, ” IEEE J. Solid-
State Circuits, vol. 40, pp. 790-804, Jun. 1999.
[17] N. Barton, K. Mayaram, “The effect of supply and substrate noise on jitter in ring oscillators,”
in Proc. Custom Integrated Circuits Conference, pp. 505-508, Jun. 2002,
[18] E. Hegazi, J. Rael, and A. Abidi, The Designer’s Guide to High-Purity Oscillators,
Kluwer Academic Publishers, 2005.
[19] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw Hill, 2001.
[20] B. D. Muer, M. Steyaert, CMOS Fractional-N Synthesizers, Kluwer Academic Publishers,
2003.