簡易檢索 / 詳目顯示

研究生: 李國台
Kao-Tai Lee
論文名稱: 高溫加氫水化學環境對鉑貴重金屬化學披覆敏化304不鏽鋼之應力腐蝕研究
指導教授: 蔡春鴻
Chuen-Horng Tsai
葉宗洸
Tsung-Kuang Yeh
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 73
中文關鍵詞: 沸水式反應器加氫水化學貴重金屬化學添加沿晶應力腐蝕龜裂慢應變速率拉伸電化學腐蝕電位
外文關鍵詞: boiling water reactor, BWR, hydrogen water chemistry, HWC, noble metal chemical addition, NMCA, intergranular stress corrosion cracking, IGSCC, Slow Strain Rate Tensile, SSRT, Electrochemical Corrosion Potential, ECP
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為解決沸水式反應器(Boiling Water Reactor, BWR)爐心的應力腐蝕龜裂(Stress Corrosion Cracking, SCC)問題,現今普遍實施加氫水化學(Hydrogen Water Chemistry, HWC)技術,以降低爐水溶氧量及爐心組件材料表面上的電化學腐蝕電位(Electrochemical Corrosion Potential, ECP)值,但此技術仍有些問題需要解決,如若加氫量不足則無法保護爐心所有區域的組件;若加氫量過高則蒸氣管路輻射劑量太高等問題。上述問題導致的貴重金屬化學添加披覆(Noble Metal Chemical Addition, NMCA)技術的發展,因為貴重金屬具有的催化性能可增益HWC的效果,使得降低注氫量仍然有保護組件材料的作用,因此原有HWC所產生的副作用將可被降低。這兩種技術已應用在實際運轉中的電廠,結果也顯示其具有肯定的成效,但是在個廠效益的評估時,尚有許多問題尚待澄清。
    理論上水的再結合反應當氫氧莫爾比大於2時,組件材料表面的ECP值會被降低,不過受到貴重金屬催化作用的影響,氫氧莫爾比小於2即發現ECP下降的效果更加明顯。在本實驗室以兩種不同高低氫氧莫爾比(大於2.7與等於0.5)的水化學環境,針對三種不同披覆條件的試片(預氧化膜、NMCA-12hrs、NMCA-24hrs)來進行慢應變速率拉伸(Slow Strain Rate Tentile, SSRT)試驗,另外,在固定三種溶氫濃度(0、10、50 ppb)及同時改變溶氧濃度的水化學環境下,監測ECP值的連續變化,以觀察HWC環境中,不同溶氫量變化對貴重金屬披覆ECP的影響。實驗結果顯示,貴重金屬催化作用導致ECP下降的效果必須在高溶氫水化學環境較為明顯,此外由表面分析得知,材料表面上只需要有少量的貴重金屬存在就能夠加強HWC的反應。SSRT的結果則顯示,無論有無貴重金屬覆膜的試片在HWC環境均無IGSCC發生。


    目 錄 摘 要……………………………………………………………………...i 致 謝…………………………………………………………………….iii 目 錄…………………………………………………………………….iv 圖 目 錄………………………………………………………………..vii 表 目 錄………………………………………………………………...ix 第一章 緒 論…………………………………………………………..1 1.1. 研究背景………………………………………………………1 1.2. 研究動機………………………………………………………2 第二章 文 獻 回 顧……………………………………..……………5 2.1. 應力腐蝕龜裂…………………………………………………5 2.1.1. 肇因………………………………………………………5 2.1.2. 防治方法…………………………………………………7 2.2. 加氫水化學……………………………………………………9 2.2.1. 工作原理…………………………………………………9 2.2.2. 負面影響………………………………………………..10 2.3. 貴重金屬化學添加覆膜……………………………………..14 2.3.1. 工作原理………………………………………………..14 2.4. 加氫水化學與貴重金屬催化作用在ECP上的效應……….15 2.5加氫水化學與貴重金屬在高溫下ECP的量測……………….21 2.6國外電廠實際應用…………………………………………….23 第三章 實 驗 方 法…………………………………………………30 3.1. 試片…………………………………………………………..31 3.2. 貴重金屬覆膜………………………………………………..31 3.3. 水循環系統( Water Loop )……………………….…………..32 3.3.1. 水循環管路設計………………………………………..33 3.3.2. 高壓設備………………………………………………..36 3.3.3. 溫控系統………………………………………………..36 3.3.4. 水質監測………………………………………………..37 3.3.5. 純水過濾………………………………………………..38 3.3.6. 通氣流量控制…………………………………………..38 3.3.7. 數據紀錄………………………………………………..39 3.4. 慢應變速率拉伸試驗………………………………………..40 3.5. 電化學腐蝕電位試驗………………………………………..40 3.6. 表面分析……………………………………………………..41 第四章 實 驗 結 果…………………………………………………42 4.1. 實驗條件……………………………………………………..40 4.2. 表面分析……………………………………………………..43 4.3. 加氫環境慢應變速率拉伸試驗……………………………..46 4.4. 變化溶氧濃度與固定溶氫濃度電化學腐蝕電位量測……..49 第五章 討 論…….…………………………………………………..52 5.1. 表面分析……………………………………………………..52 5.2. 貴重金屬披覆試片在HWC下的SSRT機械性質測試….…54 5.2.1. 水中溶氧300 ppb與溶氫50 ppb濃度下的機械性質..54 5.2.2. 水中溶氧300 ppb與溶氫10 ppb濃度下的機械性質…55 5.3. 改變溶氧濃度與不同固定溶氫濃度下的ECP量測………..55 5.3.1. 未加氫改變溶氧濃度下的ECP量測………………….55 5.3.2. 固定溶氫濃度10 ppb並改變溶氧濃度下的ECP量測..56 5.3.3. 固定溶氫濃度50 ppb並改變溶氧濃度下的ECP量測..57 5.3.4. 不同流速對ECP值量測的影響……………………….58 第六章 結 論…………………………………………………………59 參 考 文 獻…..…………………………..……………………………61 圖 目 錄 圖1-1. BWR爐心發生IGSCC的組件示意圖(1)…………………. 2 圖2-1. 應力腐蝕龜裂三要素(16)……………………………….…... 5 圖2-2. 典型IGSCC之SEM影像………………………………… 7 圖2-3. 主熱傳迴路區域與爐水通路示意圖(19)…………………… 11 圖2-4. 沸水式反應器實施加氫水化學狀態下,主熱傳迴路中各區域的氫、氧、過氧化氫濃度與電化學腐蝕電位分佈的電腦模擬情形(19)…………………………………………… 12 圖2-5. BWR主蒸氣管路輻射隨飼水注氫量升高示意圖(21)…….. 13 圖2-6. HWC造成氧化層結構改變以致於60Co溶入爐水之示意圖(21)………………………………………………………… 14 圖2-7. 在Pt表面H2和O2反應之E vs. log|i|示意圖(22)…………. 17 圖2-8. 在不鏽鋼表面H2和O2反應之E vs. log|i|示意圖(22)……… 18 圖2-9. 304不鏽鋼試片表面電鍍鉑在改變溶氧濃度與固定溶氫150 ppb濃度之ECP變化(24)………………………………. 18 圖2-10. 304不鏽鋼試片表面電鍍鉑在改變溶氧濃度與固定溶氫250 ppb濃度之ECP變化(24)………………………………. 19 圖2-11. 304不鏽鋼試片表面電鍍鉑在改變溶氫濃度與固定溶氧550 ppb濃度之ECP變化(24)………………………………. 19 圖2-12. 貴重金屬被覆處理前後陰極與陽極極化曲線變化情形(19)………………………………………………….……... 21 圖2-13. 六種不同合金條件在高溫288 ℃變化氫氧莫爾比的ECP曲線圖(26)…………………………………………………… 22 圖2-14. NMCA披覆試片在高溫288 ℃變化氫氧莫爾比的ECP曲線圖(26)…………………………………………………… 23 圖2-15. NMCA電廠應用程序流通管路示意圖(28)………………… 24 圖2-16. Duane Arnold電廠爐心上方空間加氫測試ECP反應(27)… 25 圖2-17. Duane Arnold電廠爐心下方空間加氫測試ECP反應(27)… 26 圖2-18. Hatch 1電廠應用程序流通管路示意圖(30)………………... 28 圖2-19. Hatch 1電廠其BHDL加氫測試ECP反應(31)…………… 28 圖2-20. Hatch 1電廠其爐心下方加氫測試ECP反應(31)…………. 29 圖3-1. 實驗流程圖…………………………………………….…... 30 圖3-2. 拉伸試片尺寸……………………………………………… 31 圖3-3. SSRT水循環系統裝示意圖……………………………….. 34 圖3-4. ECP水循環系統裝示意圖…………………………….…… 34 圖3-5. SSRT實驗設備…………………………………………….. 35 圖3-6. ECP 實驗設備……………………………………………... 35 圖4-1. NMCA-12試片Pt mapping影像與AES影像…………… 43 圖4-2. NMCA-24試片Pt mapping影像與AES影像…………… 44 圖4-3. 三種不同披覆試片表面成分AES縱深分析……………… 45 圖4-4. 三種不同披覆試片在溶氧濃度300 ppb和溶氫濃度50 ppb水質下SSRT試驗的斷面SEM影像………………… 46 圖4-5. 三種不同披覆試片在溶氧濃度300 ppb和溶氫濃度10 ppb水質下SSRT試驗的斷面SEM影像………………… 46 圖4-6. 三種披覆試片在未加氫溶氧濃度變化下ECP量測曲線…………………………………………………………… 50 圖4-7. 三種披覆試片與Pt在溶氫濃度10 ppb與溶氧度變化下ECP量測曲線……………………………………………… 51 圖4-8. 三種披覆試片與Pt在溶氫濃度50 ppb與溶氧濃度變化下ECP量測曲線……………………………………………… 51 圖5.1. 304SS-NMCA-400 ppb Fe2O3試片表面的元素組成之深度分佈(32)…………………………………………….………... 53 表 目 錄 表2-1. NMCA程序條件列表(29)…………………………………… 25 表2-2. 已有採用GE公司所發展NobleChemTM覆膜技術之電廠(30)………………………………………………………… 27 表2-3. GE公司對各電廠進行NobleChemTM覆膜技術的條件(30).. 27 表4-1. SSRT試驗條件表………………………………………….. 42 表4-2. ECP量測條件表…………………………………………… 43 表4-3. 溶氧濃度300 ppb和溶氫濃度50 ppb的SSRT數據……. 45 表4-4. 溶氧濃度300 ppb和溶氫濃度10 ppb的SSRT數據……. 46 表5.1. 貴重金屬沉積過程中之貴重金屬沉積量( μg/cm2 )(32).…... 53

    (1)R. L. Cowan, "Stress Corrosion Mitigation Strategies of US BWRs," Power Plant Chemistry 1995, Essen, Germany , Oct.26-37, 1995.
    (2)R. L. Cowan, Nuclear Engineering International, January, (1986) p.26.
    (3)R.W. Weeks, "Stress Corrosion Cracking in BWR and PWR Piping," Proc. Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Plant - Water Reactors, NACE, Myrtle Beach, South Carolina, Aug. 22-25, (1983) p.69.
    (4)R. L. Cowan, "The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry," Water Chemistry of Nuclear Reactor Systems 7, BNES, Bournemouth, England, Oct. 13-17, 1996, p.196.
    (5)J. C. Danko, "Recent Observations of Cracking in Large Diameter BWR Piping," Proc. Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Plant - Water Reactors, NACE, Myrtle Beach, South Carolina, Aug. 22-25, 1983, p.209.
    (6)U.S. Nuclear Regulatory Commission, Intergranular Stress Corrosion of Core Shrouds in Boiling Water Reactors, NRC Generic Letter 94-03, July 25, 1994.
    (7)U.S. Nuclear Regulatory Commission, Jet Pump Hold-Down Beam Failure, NRC Information Notice 93-101, December 19, 1993.
    (8)U.S. Nuclear Regulatory Commission, Cracking of Lower Region of the Core Shroud in Boiling Water Reactors, NRC Information Notice 94-42, June 7, 1994 .
    (9)U.S. Nuclear Regulatory Commission, Reactor Vessel Top Guide and Core Plate Cracking, NRC Information Notice 95-17, March 10, 1995.
    (10)S. Hettiarachchi et al., "The Concept of Noble Metal Chemical Addition Technology for IGSCC Mitigation of Structural Materials," Proc. 7th International Symposium on Environmental Degradation of Material in Nuclear Power Systems - Water Reactors, NACE, Breckenridge, Colorado, Aug.6-10,1995,p.735.
    (11)Y. J. Kim, L. W. Niedrach, M. E. Indig, P. L. Andresen, "The Application of Noble Metals in Light Water Reactors", JOM, April, (1992) p.14.
    (12)P. L. Andresen, "Mitigation of Stress Corrosion Cracking by Underwater Thermal Spray of Noble Metals", CORROSION/95, paper no. 412, Houston, TX, NACE International, (1995).
    (13)Y. J. Kim, L. W. Niedrach, P. L. Andresen, "Corrosion Potential Behavior of Noble Metal Modified Alloys in High Temperature Water", CORROSION/95, paper no.99. Houston, TX, NACE International, (1995).
    (14)S. Hettiarachchi, G. P. Wozadlo, "A Novel Approach for Noble Metal Deposition on Surface for IGSCC Mitigation of Boiling Water Reactor Internals", CORROSION/95, paper no. 413, Houston, TX, NACE International, (1995).
    (15)T. K. Yeh et al.,"The Effect of Catalytic Coatings on IGSCC Mitigation for Boiling Water Reactors Operated Under Hydrogen Water Chemistry," Proceedings of the 8th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors, Amelia Island, Floriga, August 10-14, 1997, American Nuclear Society, p.559.
    (16)D. A. Jones, Principles and Prevention of Corrosion , 2nd ed., Prentice Hall, Upper Saddle River, NJ, (1996).
    (17)葉宗洸, 余明昇, 「國內外沸水式反應器壓力槽內部組件劣化問題」, 核研季刊, 第23期, 民國86年4月, 48~69頁.
    (18)C. C. Lin, " Hydrogen Water Chemistry Technology in BWRS", Proc. of the 1998 JAIF Water Chemistry Conference, JAIF, Kashiwazaki, Japan, Oct.11-16, 1998, p.211.
    (19)葉宗洸, 開執中, 貴重金屬化學添加對核一、二廠飼水加氫效果增益研究與預測, 第一次期中報告書,, 民國88年4月, 22~36頁.
    (20)T. K. Yeh and D.D. Macdonld, " Modeling the Development of Damage in BWR Primary Coolant Circuit", Proc. of 7th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, NACE International, Breckenridge, Colorado, Aug.7-10, 1995, p.909.
    (21)R. L. Cowan, " The Mitigation of IGSCC of BWR Internals with Hydrogen Water Chemistry", Nuclear Energy, 36, No.4, (1997) p.257.
    (22)L.W. Niedrach, W.H. Stoddard," Corrosion Potential and Corrosion Behavior of AISI 304 Stainless Steel in High Temperature Water Containing Both Dissolved Hydrogen and Oxygen", Corrosion, Vol.42, No.12, (1986) p.696.
    (23)L. W. Niedrach," Effect of Palladium Coatings on the Corrosion Potential of Stainless Steel in High Temperature Water Containing Dissolved Hydrogen and Oxygen", Corrosion, Vol.47, No.3, (1991) p.162.
    (24)T. K. Yeh et al, " ECP Responses of Platinum Coated Type 304 Stainless Steel to Simulated BWR Environments", Proc. of the 1998 JAIF Water Chemistry Conference, JAIF, Kashiwazaki, Japan, Oct.11-16, 1998, p.562.
    (25)D. D. Macdonald, " Calculation of Corrosion Potentials in Boiling Water Reactors", Proc. of 5th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, ANS, Monteney, California, Aug 25-29, 1991, p935.
    (26)Y. J. Kim, "Effect of Noble Metal Addition on Electrochemical Polarization Behavior of Hydrogen Oxidation and Oxygen Reduction on Type 304 Stainless Steel in High-Temperature Water", Corrosion, May, (1999) p.456.
    (27)S. Hettiarachchi et al, "The First In-Plant Demonstration of Noble Metal Chemical Addition (NMCA) Technology for IGSCC Mitigation of BWR Internals", Proc. of 8th Intl. Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactor, ANS, Amelia Island, Florida, Aug10-14, 1997, p.535.
    (28)S. Hettiarachchi et al, "First Application of NobleChemTM to an Operating BWR", Proc. of the 1998 JAIF Water Chemistry Conference, JAIF, Kashiwazaki, Japan, Oct.11-16, 1998, p.155.
    (29)K. Keith et al, ? NobleChem Reapplication at Duane Arnold", 2000 BWR Chemistry and Materials Workshop 14 - GE Proprietary.
    (30)R. J. Law, "NobleChemTM Applications Summary 1999", 2000 BWR Chemistry and Materials Workshop 14 - GE Proprietary.
    (31)S. Hettiarachchi, "GE Perspective on Post-NobleChemTM Startups", 2000 BWR Chemistry and Materials Workshop 14 - GE Proprietary.
    (32)梁仲賢, 加氫水化學之貴重金屬化學添加效益研究, 期末報告, 民國89年11月14日.
    (33)林盈吉, 鉑覆膜之敏化304不鏽鋼於高溫水中應力腐蝕龜裂之研究, 國立清華大學碩士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE