簡易檢索 / 詳目顯示

研究生: 洪英哲
Hung, Ing-Zhe
論文名稱: 超臨界流體轉酯化反應製備生質柴油
Preparation of Biodiesel by Transesterification Using Supercritical Fluid
指導教授: 談駿嵩
Tan, Chung-Sung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 75
中文關鍵詞: 超臨界流體轉酯化反應生質柴油
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    由於商業鹼製程在轉酯化反應的過程中,會受限於原料中的水分及游離脂肪酸,而產生皂化作用,使產率下降;且於製程中需加入液體觸媒,而使得轉酯化反應後的產物須經過水洗中和鹼液,所產生的廢液會增加分離純化的困難度並造成環境的污染。另一方面,轉酯化的原料大多是由動植物油脂而來,因此若要大量發展生質柴油,勢必會產生原料缺乏的情況,所以須選擇無競爭性的油脂,以減低原物料缺乏的風險並維持穩定的供應鏈。

    為改善鹼製程的缺失,本研究以不可食用的麻瘋油與甲醇為原料,在超臨界甲醇的條件下,於連續式管狀反應器中進行轉酯化反應,且亦於反應器中填入固體觸媒及添加共溶劑,促進醇油間的接觸及混合,以減少製程的能耗並加速轉酯化反應的進行。藉由獲得轉酯化反應的產率,可得到最適操作條件;此外,亦可求出動力式參數,以作為日後放大設計之依據。

    實驗結果顯示,在操作溫度為280℃、壓力為2000 psi、醇油莫耳比為24及滯留時間為20分鐘時,以填充氧化錳觸媒進行轉酯化反應;與未填充觸媒時相比,甲基酯產率由20%左右,大幅提升至99%以上,且在觸媒作用下,可縮短滯留時間於11分鐘,即可達到穩定的高產率;另一方面,添加乙醚共溶劑於轉酯化系統,在操作壓力為2000 psi、醇油莫耳比為12、滯留時間為5.5分鐘,乙醚與甲醇的莫耳比為0.1下,發現在溫度260℃以上,甲基酯產率有些微的成長,與觸媒催化的效果相比,共溶劑促進反應速率的影響是非常微弱的。

    在動力學方面,藉由一階線性方程式進行轉酯化反應之擬合結果,於填充觸媒下,反應的活化能由5686 (J/mol K)降至3063(J/molK),有明顯的下降;而由求得之指前因子及活化能代回反應之動力式,可得知於填充觸媒下之轉酯化反應動力式為-r(TG)=185 exp((-3063)/RT)C_A^ 。


    摘要 I 目錄 III 表目錄 V 圖目錄 VI 壹、緒論 1 貳、文獻回顧 3 2-1 原料油性質及應用 3 2-1-1 原料油脂之組成 3 2-1-2 原料油之選擇 3 2-1-3 原料油之應用 4 2-2 轉酯化反應 5 2-2-1 鹼催化法 7 2-2-2 超臨界流體法 8 2-3 轉酯化反應之動力學研究 11 2-3-1 轉酯化反應之反應機構 11 2-3-2 轉酯化反應相變化 15 2-4 影響轉酯化反應之條件因素 16 2-4-1 觸媒 16 2-4-2 溫度 17 2-3-3 壓力 19 2-3-4 醇油莫耳比 19 2-3-5 滯留時間 20 2-3-6 共溶劑 20 2-5 填充床反應器設計 31 2-5-1 壓力降效應 31 2-5-2 管壁渠道效應 32 2-5-3 床體孔隙度效應 32 參、實驗部分 33 3-1 實驗流程及操作說明 33 3-1-1 進料油脂之前處理 33 3-1-2 轉酯化反應步驟 35 3-1-3 反應器設計 38 3-1-4 產物純化及分析 39 3-2 實驗儀器 39 3-3 實驗藥品 41 肆、結果與討論 43 4-1 油脂性質分析 43 4-2 連續式轉酯化系統(超臨界流體製程) 46 4-2-1 填充管表面活性衰退現象 46 4-2-2 觸媒效應 47 4-2-3 溫度效應 48 4-2-4 壓力效應 49 4-2-5 醇油莫耳比效應 51 4-2-6 滯留時間效應 52 4-2-7 原料油性質影響 53 4-2-8 共溶劑效應 54 4-3 批次轉酯化系統(鹼催化製程) 55 4-3-1 醇油比效應 55 4-3-2 觸媒量效應 56 4-3-3 原料油性質影響 58 4-4 鹼製程與超臨界製程之對比 59 4-5 轉酯化反應之動力式 61 4-5-1 轉化率對反應時間之影響 61 4-5-2 反應之活化能對比 64 伍、結論 65 參考文獻 67 附錄 73 附錄一 生質柴油性質說明 73 附錄二 美國ASTM 生質柴油規範 74 附錄三 歐盟生質柴油規範 75

    Achten, W. M. J.; Verchot L.; Franken Y. J.; Mathijs E.; Singh, V.P.; Aerts, R.; Muys, B. Jatropha Bio-diesel Production and Use. Biomass Bioenergy, 2008. 32, 1063-1084.

    Billaud, F.; Dominguez, V.; Broutin, P.; Busson, C. Production of Hydrocarbons by Pyrolysis of Methyl Esters from Rapeseed Oil. J. Am. Oil Chem. Soc., 1995. 72(10), 1149-1154.

    Bunyakiat, K.; Makmee, S.; Sawangkeaw, R.; Ngamprasertsith S. Continuous Production of Biodiesel via Transesterification from Vegetable Oils in Supercritical Methanol. Energy Fuels, 2006. 20, 812-817.

    Bertoldi, C.; Silva, C. D.; Bernardon, J. P.; Corazza, M. L.; Filho, L. C.; Oliveira, J. V.; Corazza, F. C. Continuous Production of Biodiesel from Soybean Oil in Supercritical Ethanol and Carbon Dioxide as Cosolvent. Energy Fuels, 2009. 23, 5165-5172.

    Cao, W. L.; Han, H. W.; Zhang, J. C. Preparation of Biodiesel from Soybean Oil Using Supercritical Methanol and Co-solvent. Fuel, 2005. 84, 347-351.

    Chitra, P.; Venkatachalam, P.; Sampathrajan, A. Optimisation of Experimental Conditions for Biodiesel Production from Alkali-catalysed Transesterification of Jatropha Curcus Oil. Energy for Sustainable Development, 2005. IX, 13-18.

    Dasari, M. A.; Goff, M. J.; Suppes, G. J. Noncatalytic Alcoholysis Kinetics of Soybean Oil. JAOCS, 2003. 80(2), 189-192.

    D’Ippolito, S. A.; Yori, J. C.; Iturria, M. E.; Pieck, C. L.; Vera; C. R. Analysis of a Two-Step, Noncatalytic, Supercritical Biodiesel Production Process with Heat Recovery. Energy Fuels, 2007. 21, 339-346.

    Freedman, B.; Pryde, E. H; Mounts, T. L., Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable Oils. J. Am. Oil Chem. Soc., 1984. 61(10), 1638-1643.

    Freedman, B.; Butterfield, R. O.; Pryde, E. H. Transesterification Kinetics of Soybean Oil. J. Am. Oil Chem. Soc., 1986. 63(10), 1375-1380.

    Fukuda, H.; Kondo, A.; Noda, H. Biodiesel Fuel Production by Transesterification of Oils. J. Biosci. Bioeng., 2001. 92(5), 405-416.

    Furuta, S.; Matsuhashi, H.; Arata, K. Biodiesel Fuel Production with Solid Superacid Catalysis in Fixed Bed Reactor under Atmospheric Pressure. Catal. Commun., 2004. 5, 721-723.

    Furuta, S.; Matsuhashi, H.; Arata, K. Biodiesel Fuel Production with Solid Amorphous-zirconia Catalysis in Fixed Bed Reactor. Biomass Bioenergy, 2006. 30, 870-8733.

    Gryglewicz, S. Rapeseed Oil Methyl Esters Preparation Using Heterogeneous Catalysts. Bioresour. Technol., 1999. 70, 249-253.

    Gryglewicz, S Alkaline-earth Metal Compounds as Alcoholysis Catalysts for Ester Oils Synthesis. Appl. Catal., A, 2000. 192, 23-28.

    Granados, M. L.; Poves, M. D. Z.; Alonso, D. M.; Mariscal, R.; Galisteo, F. C.; Moreno-Tost R.; Santamarı´a J.; Fierro, J. L.G. Biodiesel from Sunflower Oil by Using Activated Calcium Oxide. Appl. Catal., B 2007. 73, 317-326.

    Liu, X.; He, H.; Wang, Y.; Zhu, S. Transesterification of Soybean Oil to Biodiesel Using SrO as A Solid Base Catalyst. Catal. Commun., 2007. 8, 1107-1111.

    Hegel, P.; Mabe, G.; Pereda, S.; Brignole, E. A. Phase Transitions in A Biodiesel Reactor Using Supercritical Methanol. Ind. Eng. Chem. Res., 2007. 46, 6360-6365.

    Han, H. W.; Cao, W. L.; Zhang, J. C. Preparation of Biodiesel from Soybean Oil Using Supercritical Methanol and CO2 as Co-solvent. Process Biochem., 2005. 40, 3148-3151.

    He, H.; Wang, T.; Zhu, S. Continuous Production of Biodiesel Fuel from Vegetable Oil Using Supercritical Methanol Process. Fuel, 2007. 86, 442-447.

    Hou, X.; Qi, Y.; Qiao, X.; Wang, G.; Qin Z.; Wang, J. Lewis Acid-Catalyzed Transesterification and Esterification of High Free Fatty Acid Oil in Subcritical Methanol. Korean J. Chem. Eng. 2007. 24(2), 311-313.

    Imahara, H.; Xin, J.; Saka, S. Effect of CO2/N2 Addition to Supercritical Methanol on Reactivities and Fuel Qualities in Biodiesel Production. Fuel, 2009. 88, 1329-1332.

    Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P. Transesterification of Crude Palm Kernel Oil and Crude Coconut Oil by Different Solid Catalysts. Chem. Eng. J., 2006. 116, 61-66.

    Kusdiana, D.; Saka, S. Effects of Water on Biodiese Fuel Production by Supercritical Methanol. Bioresour. Technol., 2004a. 91, 289-295.

    Kusdiana, D.; Saka, S. Two-Step Preparation for Catalyst-Free Biodiesel Fuel Production Hydrolysis and Methyl Esterification. Appl. Biochem. Biotechnol., 2004b. 115, 781-791.

    Kusdiana, D.; Saka. S. Kinetics of Transesterification in Rapeseed Oil to Biodiesel Fuel as Treated in Supercritical Methanol. Fuel, 2001a. 80, 693-698.

    Kusdiana D. and Saka S., Methyl Esterification of Free Fatty Acids of Rapessed Oil as Treated in Supercritical Methanol. J. Chem. Eng. Jpn., 2001b. 34(3), 383-387.

    Knothe, G. “Desinger” Bodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties. Enery & Fuel, 2008. 22, 1358-1364.

    Karmee, S. K.; Chadha, A. Preparation of Biodiesel from Crude Oil of Pongamia Pinnata. Bioresour. Technol., 2005. 96, 1425-1429.

    Kulkarni, M.G..; Gopinath, R.; Meher, L. C.; Dalai, A. K. Solid Acid Catalyzed Biodiesel Production by Simultaneous Esterification and Transesterification. Green Chem., 2006. 8, 1056-1062.

    Kawashima, A.; Matsubara, K.; Honda, K. Development of Heterogeneous Base Catalysts for Biodiesel Production. Bioresour. Technol. 2008. 99, 3439-3443.

    Kiwjaroun, C.; Tubtimdee, C.; Piumsomboon P. LCA Studies Comparing Biodiesel Synthesized by Conventional and Supercritical Methanol Methods. J. Cleaner Prod., 2009. 17, 143-153.

    Lo´pez, D. E.; Goodwin, J.G.; Bruce, D. A.; Lotero, E. Transesterification of Triacetin with Methanol on Solid Acid and Base Catalysts. Appl. Cata. A, 2005. 295, 97-105.

    Madras, G.; Kolluru, C.; Kumar, R. Synthesis of Biodiesel in Supercritical Fluids. Fuel, 2004. 83, 2029-2033. Catal. Lett., 2008. 123, 1-6.

    Mo, X.; Lotero, E.; Lu, C.; Liu, Y.; Goodwin, J. G. A Novel Sulfonated Carbon Composite Solid Acid Catalyst for Biodiesel Synthesis. Catal. Lett., 2008. 123, 1-6.

    Nelson, L. A.; Folgia, T. A.; Marmer, W. N. Lipase-catalyzed Production of Biodiesel. J. Am. Oil Chem. Soc., 1996. 73,(9) 1191-1195.

    Niven, R. K. Physical Insight into the Ergun and Wen & Yu Equations for Fluid Flow in Packed and Fluidised Beds. Chem. Eng. Sci., 2002. 57, 527-534.

    Nemec, D.; Levec, J. Flow Through Packed Bed Reactors: 1. Single-Phase Flow. Chem. Eng. Sci. 2005. 60, 6947-6957.

    Petchmala, A.; Yujaroen, D., Shotipruk, A., Goto, M.; Sasaki, M. Production Methyl Esters from Palm Fatty Acids in Supercritical Methanol. Chiang Mai J. Sci., 2008. 35(1), 23-28.

    Patil P. D.; Deng, S. Transesterification of Camelina Sativa Oil Using Heterogeneous Metal Oxide Catalysts. Energy Fuels, 2009. 23, 4619-4624.

    Razzaq, T. and Kappe C. O., Continuous Flow Organic Synthesis under High-Temperature/Pressure Conditions. Chem. Asian J., 2010. 5, 1274-1289.

    Saka, S.; Kusdiana, D. Biodiesel Fuel from Rapeseed Oil as Prepared in Supercritical Methanol Tratment. Fuel, 2001. 80, 225-231.

    Serio, M. D.; Ledda, M.; Cozzolino, M.; Minutillo, G.; Tesser, R.; Santacesaria, E. Transesterification of Soybean Oil to Biodiesel by Using Heterogeneous Basic Catalysts. Ind. Eng. Chem. Res., 2006. 45, 3009-3014.

    Singh, A. K.; Fernando. S. D. Reaction Kinetics of Soybean Oil Transesterification Using Heterogeneous Metal Oxide Catalysts. Chem. Eng. Technol., 2007. 30(12), 1716-1720.

    Singh, A. K.; Fernando. S. D. Transesterification of Soybean Oil Using Heterogeneous Catalysts. Energy and Fuels, 2008. 22, 2067-2069.

    Suppes, G. J.; Dasari, M. A.; Doskocil, E. J.; Mankidy, P. J.; Goff, M. J. Transesterification of Soybean Oil with Zeolite and Metal Catalysts. Appl. Catal., A, 2004. 257, 213-223.

    Sawangkeaw, R.; Bunyakiat, K.; Ngamprasertsith, S. Effect of Co-solvents on Production of Biodiesel via Transesterification in Supercritical Methanol. Green Chem., 2007. 9, 679-685.

    Tang, Z.; Wang, L.; Yang, J. Transesterification of the Crude Jatropha Curcas L. Oil Catalyzed by Micro-NaOH in Supercritical and Subcritical Methanol. Eur. J. Lipid Sci. Technol., 2007. 109, 585-590.

    Vieitez, I.; Silva, C. d.; Borges, G. R.; Corazza, F. C.; Oliveira, J. V.; Grompone, M. A. Jachmania´n, I. Continuous Production of Soybean Biodiesel in Supercritical Ethanol-Water Mixtures. Energy Fuels, 2008. 22, 2805-2809.

    Wang, C. W.; Zhou, J. F.; Chen, W.; Wang, W. G.; Wu, Y. X. Effect of Weak Acids as a Catalyst on the Transesterification of Soybean Oil in Supercritical Methanol. Energy Fuels, 2008. 22, 3479-3483.

    Warabi, Y.; Kusdiana, D.; Saka, S. Reactivity of Triglycerides and Fatty Acids of Rapeseed Oil in Supercritical Alcohols. Bioresor. Technol., 2004. 91, 289-295.

    Wang Y.; Ou, S.; Liu, P.; Zhang, Z. Preparation of Biodiesel from Waste Cooking Oil via Two-step Catalyzed Process. Energy Convers. Manage., 2007. 48, 184-188.

    Yin, J.Z.; Xiao, M.; Song, J. B. Biodiesel from Soybean Oil in Supercritical Methanol with Co-solvent. Energy Convers. Manage., 2008. 49, 908-912.

    Yang, Z.; Xie, W. Soybean Oil Transesterification over Zinc Oxide Modified with Alkali Earth Metals, Fuel Process. Technol., 2007. 88, 631-638.

    Zheng, S.; Kates, M.; Dube, M. A.; McLean, D. D. Acid Catalyzed Production of Biodiesel from Waste Frying Oil. Biomass bioenergy, 2006. 30, 267-272.

    經濟部標準檢驗局,中華民國國家標準CNS3648食用油脂檢驗法-皂化價測定.

    經濟部標準檢驗局,中華民國國家標準CNS3647食用油脂檢驗法-酸價測定.

    江建忠,利用超臨界流體技術製備生質柴油之研究,碩士論文,國立清華大學, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE