簡易檢索 / 詳目顯示

研究生: 陳庭芳
Chen, Ting Fang
論文名稱: 研究肝癌細胞對於內皮前驅細胞及衍生內皮細胞分化、移動、入侵及管狀結構形成之影響
Effect of Hepatocellular Carcinoma Cell on Differentiation, Migration, Invasion, and Tubular Structure Formation of Endothelial Progenitor Cell and Outgrowth Endothelial Cell
指導教授: 陳令儀
Chen, Linyi
裘正健
Chiu, Jeng-Jiann
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 96
中文關鍵詞: 內皮前驅細胞衍生內皮細胞共同培養肝癌腫瘤細胞血管新生過程內皮細胞
外文關鍵詞: endothelial progenitor cell, outgrowth endothelial cell, coculture, hepatocellulae carcinomas cell, angiogenesis processing, endothelial cell
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管新生在胚胎發育或組織修補上扮演重要的角色,也是腫瘤惡化過程中重要的步驟。近年研究顯示,來自血液的內皮前驅細胞及衍生內皮細胞會因為受到腫瘤細胞釋放的訊息因子刺激之後,移動與侵入至腫瘤組織附近,並逐漸分化成內皮細胞而幫助血管新生發展。在多篇的文獻中,也都證明利用骨髓移植或皮下注射內皮前驅細胞及衍生內皮細胞到帶有腫瘤的動物體內,內皮前驅細胞及衍生內皮細胞會移動到腫瘤組織的週邊並促進血管新生。然而,內皮先驅細胞和衍生內皮細胞與腫瘤之間的交互作用,存在著許多待解的謎題。因此,本實驗將利用體外共同培養系統,觀察內皮前驅細胞與其衍生內皮細胞受到腫瘤細胞的影響後,其分化、移動、侵入、細胞週期與管狀結構的能力變化。
    在臨床相關的結果裡顯示,肝腫瘤是個會釋放大量促進血管新生訊息及好發血管新生的惡性腫瘤。首先,我們利用流式細胞儀偵測細胞表面特殊蛋白的變化,發現肝腫瘤細胞株Huh7與Hep3B能夠促進內皮前驅細胞分化走向更成熟的內皮細胞;進一步,我們利用活細胞攝影系統與計算移動細胞數,發現肝癌細胞株Huh7與Hep3B,具有促進並引導內皮先驅細胞的移動與侵入走向腫瘤細胞的能力,在管狀結構的形成方面,肝癌細胞株並不會促進內皮前驅細胞的管狀結構能力;但相反的,肝癌細胞株Huh7與Hep3B而對於衍生內皮細胞在移動與侵入甚至是管狀結構形成的影響卻是呈現抑制的現象。不僅如此,肝癌細胞會調節衍生內皮細胞的細胞週期並抑制進入S及M的階段,促使細胞停留在G0/G1的階段。
    從以上研究結果,我們認為肝癌細胞株會影響內皮先驅細胞與其衍生內皮細胞的許多血管新生的相關功能,但也許內皮先驅細胞與其衍生內皮細胞在血管新生過程中擔任的角色不同,而造成肝癌細胞株對於兩者在分化、移動、入侵及管狀結構形成的影響能力不同。


    Angiogenesis not only play a critical role in embryonic development and tissue repair, but also is an important process for tumor growth and metastasis. Recent studies have shown that tumor cells could induce the mobilization of endothelial progenitor cell (EPC) and outgrowth endothelial cell (OEC) from bone marrow via many cytokines, such as GM-CSF、SDF-1 and VEGF. Furthermore, those EPC could migrate and invade to tumor micro-metastatic niche, and gradually differentiate into endothelial like-cell incorporate the growing vasculature. Using ex vitro culture-expanded EPC or OEC transplanted in to the tumor bearing mice, many researches suggest that EPC control the angiogenic switch and OEC facilitate the neoangiogenesis in the tumor progression. However, the underlying interaction mechanism of EPC/OEC and carcinoma cells in the progression of tumor cell remains unclear. Thus, the aim of the present study to elucidate the effect of tumor cell on differentiation, migration, invasion, and tubular structure formation of EPC and OEC, using in vitro co-cultured system.
    Firstly, we need to identified EPC and OEC derived from peripheral blood mononuclear cells. We found both of EPC and OEC displayed several commonly accepted EPC phenotypes, including spindle/cobblestone morphology, ac-LDL incorporation, UEA-1 binding, and CD31/KDR/Flt-1 reactivity. The previous clinical reports have indicated that hepatocellular carcinoma (HCC) is one of malignant tumor with rich neovascularization, which can be clearly observed in hepatic angiography. On the basis of co-culture transwell model and time-lapse video microscopy system, we show that migration and invasion capability of EPC was augmented by HCC, and also can induce EPC express higher intensity of endothelial markers to promote the differentiation of EPC. On the other hand, the migration, invasion and tubular structure formation of OEC was inhibited by HCC. In addition, HCC did not alter cell cycle of EPC, whereas they prevented OEC from entering S and G2/M phases and induce OEC cell cycle G0/G1 arrest. The present study suggests that the different effect of HCC on EPC and OEC may mediate their different contribution to tumor angiogenesis. Our findings may provide new insights into the interaction mechanism of EPC/OEC and HCC involve in the progression of angiogenesis.

    目錄 I 致謝辭 V 縮寫對照表 VI 摘要 VIII Abstract X 第一章 緒論 1 1-1 內皮前驅細胞及衍生內皮細胞的發現 2 1-2 內皮前驅細胞與衍生內皮細胞取得來源 4 1-3 內皮前驅細胞與衍生內皮細胞的鑑定 5 1-3a 內皮前驅細胞與衍生內皮細胞的培養方法與型態辨認 5 1-3b 內皮前驅細胞與衍生內皮細胞表現的特殊抗原 7 1-3c 內皮前驅細胞與衍生內皮細胞具有內皮細胞特性的功能 7 1-4 內皮前驅細胞與衍生內皮細胞的移動及入侵性 11 1-5 內皮前驅細胞及衍生內皮細胞具有幫助血管新生的特性 12 1-6肝腫瘤的發生率 13 1-7造成肝腫瘤的原因 14 1-8 內皮前驅細胞與衍生內皮細胞對於腫瘤血管新生的關係 15 1-9 內皮前驅細胞與衍生內皮細胞和肝腫瘤的關係 16 1-10 研究目的 18 第二章 材料與方法 20 2-1 由人類血液分離內皮前驅細胞與衍生內皮細胞的方法 21 2-2 由人類臍帶靜脈分離人類臍靜脈內皮細胞的方法 23 2-3 細胞共同培養系統 25 2-4 利用流氏細胞儀分析細胞表面抗原 26 2-5細胞移動性的實驗 27 2-6細胞入侵性的實驗 29 2-7 測定細胞週期變化的實驗 31 2-8利用顯微照相系統拍攝細胞共同培養之實驗 32 2-9管狀結構形成能力之實驗 33 第三章 結果 35 3-1 分析內皮前驅細胞與衍生內皮細胞的型態與表面抗原表現 35 3-2 分析內皮前驅細胞與衍生內皮細胞的移動能力 36 3-3 分析內皮前驅細胞與衍生內皮細胞的入侵能力 36 3-4 分析內皮前驅細胞與衍生內皮細胞形成管狀結構的潛力 37 3-5 分析肝腫瘤細胞影響內皮前驅細胞與衍生內皮細胞分化的結果 38 3-6 分析肝腫瘤細胞影響內皮前驅細胞與衍生內皮細胞的移動能力 39 3-7 分析肝腫瘤細胞影響內皮前驅細胞與衍生內皮細胞的入侵能力 41 3-8 分析肝腫瘤細胞影響內皮前驅細胞與衍生內皮細胞形成管狀結構的潛力 42 第四章 討論 44 第五章 參考文獻 53 第六章 附圖 65 圖6-1 從人類周邊血液分離內皮前驅細胞與衍生內皮細胞的方法…………….66 圖6-2 內皮前驅細胞與衍生內皮細胞的特徵與形態…………………………….67 圖6-3 內皮前驅細胞與衍生內皮細胞的移動的能力……………………………..71 圖6-4 內皮前驅細胞與衍生內皮細胞的的入侵的能力…………………………..73 圖6-5 內皮前驅細胞與衍生內皮細胞形成管狀結構的能力……………………..74 圖6-6 內皮前驅細胞衍生內皮細胞受到肝癌腫瘤細胞影響後細胞表面抗原表現的情況……………………………………………………………………………….76 圖6-7 內皮前驅細胞與衍生內皮細胞受到肝癌腫瘤細胞影響後細胞移動的能力與程度………………………………………………………………………………..84 圖6-8 利用顯微照相系統拍攝內皮前驅細胞與衍生內皮細胞和肝癌腫瘤細胞共同培養的情況………………………………………………………………………..86 圖6-9 內皮前驅細胞與衍生內皮細胞受到肝癌腫瘤細胞影響後細胞入侵的能力與程度………………………………………………………………………………..88 圖6-10 內皮前驅細胞與衍生內皮細胞受到肝癌腫瘤細胞影響後細胞形成管狀結構的能力與程度…………………………………………………………………..90 第七章 表格………………………………………………………………………. 92 表格7-1 內皮前驅細胞與衍生內皮細胞及人類臍靜脈內皮細胞型態與功能的表現……………………………………………………………………………………..93 表格7-2 內皮前驅細胞與衍生內皮細胞受到肝癌腫瘤細胞影響後細胞表面抗原變化之統整…………………………………………………………………………..94 表格7-3 內皮前驅細胞與衍生內皮細胞受到肝癌腫瘤細胞影響後細胞週期的變化……………………………………………………………………..………………95 表格7-4 內皮前驅細胞受到肝癌腫瘤細胞影響後在分化、移動、入侵及形成管狀結構之統整………………..…………………………………………………………96

    第五章 參考文獻
    Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T. (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell;118:149-161

    Asahara T, Murohara T, Sullivan A, Van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science;275:964-967

    Assmus B, Schächinger V, Teupe C, Britten M, Lehmann R, Döbert N, Grünwald F, Aicher A, Urbich C, Martin H, Hoelzer D, Dimmeler S, Zeiher AM. (2002). Transplantation of Progenitor Cells and Regeneration Enhancement in Acute Myocardial Infarction (TOPCARE-AMI), Circulation;106:3009-3017

    Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, Boehm SM, Menne J, Haller H, Fliser D. (2004). Erythropoietin regulates endothelial progenitor cells. Blood;103:921-926

    Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A, Tolla-Le Port C, Leboeuf M, Charbord P, Bikfalvi A, Uzan G. (2004). Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood;103:2577-2584

    Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF. (2000). Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res;87:728-730

    Ingram DA, Caplice NM, Yoder MC. (2005). Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood;106:1525-1531

    Delvos U, Gajdusek C, Sage H, Harker LA, Schwartz SM. (1982). Interactions of vascular wall cells with collagen gels. Lab Invest;46:61-72.

    De Palma M, Venneri MA, Roca C, Naldini L. (2003). Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells. Nat Med;9:789-795.

    Dudek AZ, Bodempudi V, Welsh BW, Jasinski P, Griffin RJ, Milbauer L, Hebbel RP. (2007). Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy. Br J Cancer;97:513-522

    Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F, Kluge R, Kendziorra K, Sabri O, Schuler G, Hambrecht R. (2005). Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study, Blood;106:2347-2355

    Fan Y, Ye J, Shen F, Zhu Y, Yeghiazarians Y, Zhu W, Chen Y, Lawton MT,Young WL, Yang GY. (2008). Interleukin-6 stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J Cereb Blood Flow Metab;28:90-98

    Folkman J. (1971). Tumor angiogenesis: therapeutic implications. NEJM;285:1182-6

    Flamme I, Frölich T, Risau W. (1997). Molecular mechanisms of vasculogenesisand embryonic angiogenesis. J Cell Physiol;173:206-10.

    Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A, Fuks Z, Kolesnick R. (2003). Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science;300:1155-1159

    Gao D, Nolan DJ, Mellick AS, Bambino K, McDonnell K, Mittal V. (2008). Endothelial progenitor cells control the angiogenic switch in mouse lung metastasis. Science;319:195-198

    Gehling UM, Ergün S, Fiedler W. (2007). CFU-EC: how they were originally defined. Blood;110;1073

    Gerber HP, Malik AK, Solar GP, Sherman D, Liang XH, Meng G, Hong K, Marsters JC, Ferrara N. (2003). VEGF regulates hematopoietic stem cell survival by an internal autocrine loop mechanism. Nature;417:954-958

    Gill M, Dias S, Hattori K, Rivera ML, Hicklin D, Witte L, Girardi L, Yurt R,Himel H, Rafii S. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circ Res;88:167-174

    Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD. (2003). Diverse Origin and Function of Cells With Endothelial Phenotype Obtained FromAdult Human Blood. Circ Res;93:1023-5

    Hattori K, Heissig B, Wu Y, Dias S, Tejada R, Ferris B, Hicklin DJ, Zhu Z, Bohlen P, Witte L, Hendrikx J, Hackett NR, Crystal RG, Moore MA, Werb Z,Lyden D, Rafii S. (2002). Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1+ stem cells from bone-marrow microenvironment. Nat Med;8:841-849

    Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S. (2003). Erythropoietin is a potent physiological stimulus for endothelial progenitor cell mobilization. Blood;17: 17

    Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG,Besmer P, Lyden D, Moore MA, Werb Z, Rafii S. (2002). Recruitment of stemand progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell;109:625-637

    Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med;348:593-600

    Ho JW, Pang RW, Lau C, Sun CK, Yu WC Fan ST, Poon RT. (2006). Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology;44:836-43

    Holthofer H, Virtanen I, Kariniemi AL, Horima M, Linder E, Miettinen A. (1982). Ulex europaeus I lectin as a marker for vascular endothelium in human tissues. Lab Invest;47:60-66.

    Hristov M, Erl W, Weber PC. (2003). Endothelial progenitor cells: mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol;23:1185-1189

    Huang PP, Li SZ, Han MZ, Xiao ZJ, Yang RC, Qiu LG, Han ZC. (2004). Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol;24:288-93

    Iwaguro H, Yamaguchi J, Kalka C, Murasawa S, Masuda H, Hayashi S, Silver M, Li T, Isner JM, Asahara T. (2002). Endothelial progenitor cell vascular endothelial growth factor gene transfer for vascular regeneration. Circulation;105:732-738

    Iwami Y, Masuda H, Asahara T. (2004). Endothelial progenitor cells: past, state of the art, and future. J Cell Mol Med;8:488-497

    Jackson KA, Majka SM, Wang H, Pocius J, Hartley CJ, Majesky MW, Entman ML, Michael LH, Hirschi KK, Goodell MA. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest;107:1395-1402
    Hirschi KK, Ingram DA, Yoder MC. (2008). Assessing Identity, Phenotype, and Fate of Endothelial Progenitor Cells. Arterioscler Thromb Vasc Bio;28:1584-1595

    Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver M, Ma H, Kearney M, Isner JM, Asahara T. (2001). Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation;103:634-637

    Kawamoto A, Iwasaki H, Kusano K, Murayama T, Oyamada A, Silver M, Hulbert C, Gavin M, Hanley A, Ma H, Kearney M, Zak V, Asahara T, Losordo DW. (2006). CD34-positive cells exhibit increased potency and safety for therapeutic neovascularization after myocardial infarction compared with total mononuclear cells. Circulation;114:2163-2169

    Keller G. (2005). Embryonic stem cell differentiation :emergence of a new era in biology and medicine. Genes dev;19:1129-1155

    Khakoo AY, Finkel T. (2005). Endothelial progenitor cells. Annu Rev Med;56:79-101.

    Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. (2000). Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med;342:626-633

    Lin Y, Weisdorf DJ, Solovey A, Hebbel RP. (2000). Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest;105:71-77
    Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh K, Isner JM, Asahara T. (2001). HMG-CoA reductase inhibitor mobilizes bone marrow–derived endothelial progenitor cells. J Clin Invest;108:399–405

    Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore MA, Hajjar KA, Manova K, Benezra R, Rafii S. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med;7:1194-1201

    Madri JA, Pratt BM. (1986). Endothelial cell-matrix interactions: in vitro models of angiogenesis. J Histochemistry Cytochemistry;34:85-91

    Maeng YS, Choi HJ, Kwon JY, Park YW, Choi KS, Min JK, Kim YH, Suh PG, Kang KS, Won MH, Kim YM, Kwon YG. (2009). Endothelial progenitor cell homing: prominent role of the IGF2-IGF2R-PLCbeta2 axis. Blood;113:233-243

    Matthews W, Jordan CT, Gavin M, Jenkins NA, Copeland NG, Lemischka IR. (1991). Proc. Natl. Acad. Sci. USA;88:9026-30

    McGaughan GW, Shackel NA, Gorrell MD. (2001). Differential gene expression between chronic hepatitis B and C hepatic lesion. Gastroenterology;120: 955–966

    Millauer B, Wizigmann-Voos S, Schnürch H, Martinez R, Møller NP, Risau W, Ullrich A. (1993). High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell;72:835-46

    Mukai N, Akahori T, Komaki M, Li Q, Kanayasu-Toyoda T, Ishii-Watabe A, Kobayashi A, Yamaguchi T, Abe M Amagasa T, Morita I. (2008). A comparison of the tube forming potentials of early and late endothelial progenitor cells. Exp Cell Res;3:430-440

    Murayama T, Tepper OM, Silver M, Ma H, Losordo DW, Isner JM, Asahara T, Kalka C. (2002). Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol;30:967-972

    Okabe H, Satoh S, Kato T, Kitahara O, Yanagawa R, Yamaoka Y, Tsunoda T,Furukawa Y, Nakamura Y. (2001). Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genesinvolved in viral carcinogenesis and tumor progression. Cancer Res;61:2129-2137.

    Pillarisetti K, Gupta SK. (2001). Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1: SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation;25:293-300

    Pula G, Mayr U, Evans C, Prokopi M, Vara DS, Yin X, Astroulakis Z, Xiao Q, Hill J, Xu Q, Mayr M. (2009). Proteomics identifies thymidine phosphorylase as a key regulator of the angiogenic potential of colony-forming units and endothelial progenitor cell cultures. Circ Res;104:32-40

    Rafii S, Lyden D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med;9:702-712

    Rhode E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, Guelly C, Strunk D. (2006). Monocytes mimic endothelial progenitor cells. Stem Cells;24:357-367

    Ribatti D. (2004). The involvement endothelial progenitor cells in tumor angiogenesis. J.Cell.Mol;8:294-300

    Schatteman GC. (2004). Adult bone marrow-derived hemangioblasts, endothelial cell progenitors, and EPCs. Curr Top Dev Biol;64:141-180

    Schatteman GC, Hanlon HD, Jiao C, Dodds SG, Christy BA. (2000). Blood-derived angioblasts accelerate blood-flow restoration in diabetic mice. J Clin Invest;106:571-578

    Shintani S, Murohara T, Ikeda H, Ueno T, Honma T, Katoh A, Sasaki K, Shimada T, Oike Y, Imaizumi T. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation;103:2776-2779

    Sieveking DP, Buckle A, Celermajer DS, Ng MK. (2008). Strikingly different angiogenic properties of endothelial progenitor cell subpopulations: insights froma novel human angiogenesis assay. J Am Coll Cardiol;51:660-8

    Smadja DM, Bièche I, Silvestre JS, Germain S, Cornet A, Laurendeau I, Duong-Van-Huyen JP, Emmerich J, Vidaud M, Aiach M, Gaussem P. (2008). Bone morphogenetic proteins 2 and 4 are selectively expressed by late outgrowth endothelial progenitor cells and promote neoangiogenesis. Arterioscler Thromb Vasc Biol;12:2137-2143

    Smadja DM, Laurendeau I, Avignon C, Vidaud M, Aiach M, Gaussem P. (2006a). The angiopoietin pathway is modulated by PAR-1 activation on human endothelial progenitor cells. J Thromb Haemost.4;2729-2731

    Solovey A, Lin Y, Browne P, Choong S, Wayner E, Hebbel RP . (1997). Circulating Activated Endothelial Cells in Sickle Cell Anemia. N Engl J Med;337:1584-1590

    Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M, Magner M Isner JM, Asahara T. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med;5:434-438

    Urbich C, Dimmeler S. (2004). Endothelial Progenitor Cells Characterization and Role in Vascular Biology. Circ Res;95:343-353

    Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, Dimmeler S. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res;89:E1–E7

    Voyta JC, Via DP, Butterfield CE, Zetter BR. (1984). Identification and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol;99:2034-2040

    Yamaguchi TP, Dumont DJ, Conlon RA, Breitman ML, Rossant J. (1993). Flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development;118:489-498

    Xu XR, Huang J, Xu ZG, Qian BZ, Zhu ZD, Yan Q, Cai T, Zhang X, Xiao HS, Qu J, Liu F, Huang QH, Cheng ZH, Li NG, Du JJ, Hu W, Shen KT, Lu G, Fu G, Zhong M, Xu SH, Gu WY, Huang W, Zhao XT, Hu GX, Gu JR, Chen Z, Han ZG. (2001). Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl. Acad. Sci. USA;98:15089-15094

    Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA. (2007). Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood;109:1801-1809

    Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS. (2005). Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation;112:1618-1627

    Yang ZF, Poon RT. (2008). Vascular changes in hepatocellular carcinoma. Anat Rec (Hoboken);291:721-734

    Zemani F, Silvestre JS, Fauvel-Lafeve F, Bruel A, Vilar J, Bieche I, Laurendeau I, Galy-Fauroux I, Fischer AM, Boisson-Vidal C. (2008). Ex vivo priming of endothelial progenitor cells with SDF-1 before transplantation could increase their proangiogenic potential. Arterioscler Thromb Vasc Biol;4:644-650

    Ziegler BL, Valtieri M, Porada GA, De Maria R, Müller R, Masella B, Gabbianelli M, Casella I, Pelosi E, Bock T, Zanjani ED, Peschle C. (1999). KDR receptor: a key marker defining hematopoietic stem cells. Science;285:1553-1558.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE