簡易檢索 / 詳目顯示

研究生: 孫志銘
Sun, Chih-Mimg
論文名稱: CMOS-MEMS 雙面後製程平台之開發及其於微感測器之整合與應用
Implementation and Development Double-side CMOS-MEMS Platform for Sensors Integration
指導教授: 方維倫
Fang, Weileun
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 147
中文關鍵詞: 微機電技術微感測器整合三軸加速度計電容式壓力計
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CMOS-MEMS使用標準化的半導體製程技術來製作微機電元件的微加工技術,能輕易地與感測、控制電路整合在同一晶片上,成為一個完整的微機電系統。目前,CMOS-MEMS後製程多半有其獨特性,造成單一後製程技術往往只能用來設計同一類型的元件,局限了在晶片上製造多種元件與達成系統整合的機會。因此本文將開發一CMOS-MEMS後製程平台,以實現整合不同形態的感測器於單一晶片上。
    為了驗證此整合平台的可行性,本論文同時設計多種不同型態的感測元件,其中包含了三軸加速度計、電容式壓力計、和熱電阻白金溫度等,單一後製程流程即可整合不同型態的感測器於單一晶片上。元件製作採用台積電(TSMC)的CMOS 0.35□m 2P4M標準製程來製作CMOS晶片,然後搭配新型雙面後製程平台完成。除此之外,本文同時探討各個感測器的設計原理;(1)多軸加速度計的設計與整合,從三軸個別獨立設計之多質量塊加速度計,慢慢演化至單質量塊三軸慣性感測器,(2)電容式壓力計設計,(3)熱電阻式溫度計以及(4)多功能感測晶片整合於單晶片中。整體而言,本論文藉由了解最基本的元件設計、製作流程、以及量測元件個別的特性,來分析與驗證此製程的可行性,期望能提供一個良好的CMOS-MEMS後製程平台用於感測器之整合與應用。


    目 錄 圖 目 錄 表 目 錄 英文摘要 中文摘要 第一章 前言 1-1研究動 1-2文獻回 1-2.1CMOS-MEMS 之製程分類 1-2.2微機電加速度計 1-2.3壓力感測計 1-2.4感測器製程整合與應用 1-3研究目標 第二章 CMOS-MEMS 雙面後製程平台 2-1CMOS-MEMS後製程流程 2-2後製程平台概念 第三章 電容式加速度計 3-1電容式加速度計感測原理 3-2加速度計之規格說明 3-3同平面加速度計 3-3.1同平面加速度計結構設計 3-3.2中空式加速度計訊號分析 3-3.3同平面加速度計量測結果 3-4出平面加速度計 3-4.1出平面加速度計結構設計 3-4.2出平面加速度計量測結果 第四章 三軸加速度計 4-1三軸加速度計 4-2三軸加速度計結構設計 4-2.1出平面加速度感測結構(Z-sensing unit) 4-2.2平面加速度感測結構(X-/Y-sensing unit) 4-2.3三軸加速度計性能分析 4-3多軸加速度計訊號耦合分析 4-3.1平面感測結構(X-/Y-)訊號耦合分析 4-3.2出平面感測結構(Z-)訊號耦合分析 4-3.3旋轉角加速度訊號耦合分析 4-4三軸加速度計量測結果 4-5三軸加速度最佳化分析 第五章 多功能感測器之整合 5-1電容式壓力感測器陣列 5-1.1電容式壓力計結構設計 5-1.2電容式壓力計陣列量測結果 5-2電熱阻式溫度感測器 5-2.1白金電熱阻式溫度感測器 5-2.2溫度感測器製程與量測結果 5-3多功能感測器之整合 5-3.1CMOS-MEMS多功能晶片整合與應用 5-3.2改良型整合製程平台 5-3.3多功能感測晶片量測與分析 第六章 結論與未來工作 參考文獻

    [1] HP Company, http://www.hp.com
    [2] Texas Instruments, http://www.ti.com
    [3] Bosch Inc., http://www.bosch.com
    [4] Freescale Semiconductor, Inc., http://www.freescale.com
    [5] Analog Devices, Inc., http://www.analog.com
    [6] MEMSIC Inc., http://www.memsic.com
    [7] VTI Technologies, http://www.vti.fi/en
    [8] Kionix Inc., http://www.kionix.com/
    [9] Hitachi Metals America, Ltd., http://www.hitachimetals.com
    [10] M. Parameswaran, R. Chung, M. Gaitan, R. B. Johnson, and M. Syrzycki, "Commercial CMOS Fabricated Integrated. Dynamic Thermal Scene Simulator," IEDM’91, Washington, DC, Dec. 8-11, 1991, pp.754-756.
    [11] F. Rudolf, A. Jornod, J. Bergqvist, and H. Leuthold, “Precision accelerometers with μg resolution,” Sensors and Actuators A, 21-23, pp 297-302, 1990.
    [12] E. Peeters, S. Vergote, B. Puers, and W. Sansen, “A highly symmetrical capacitive micro-accelerometer with single degree of freedom response,” Transducers’91, San Francisco, CA, June.24-28, 1991, pp. 97 -100.
    [13] InvenSensi Inc., http://www.invensense.com
    [14] H. Lakdawala and G. Fedder, “CMOS Micromachined Infrared Imager Pixel,” Transducers'01, Munich, Germany, June.10-14, 2001, pp. 1548-155.
    [15] SiTime Corporation, http://www.sitime.com/
    [16] Infineon Technologies AG, http://www.infineon.com/
    [17] J.C. Lee, “Hacking the Nintendo Wii Remote,” IEEE Pervasive Computing, 7, pp. 39-45, 2008.
    [18] R. Bashir, and A.E. Kabir, “Method of making surface micro-machined accelerometer using silicon-on-insulator technology”U.S.A patent No.5747353
    [19] G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M.S-C.Lu, and L.R. Carley, “Laminated high-aspect-ratio microstructure in a conventional CMOS process” Sensor and actuator A,57.pp.103-110,1996.
    [20] Apple Inc., http://www.apple.com/ipodtouch/
    [21] K. H. L. Chau, S. R. Lewis, Y. Zhao, R. T. Howe, S. F. Bart, and R. G. Marcheselli, “An integrated force-balanced capacitive accelerometer for low g application,”Sensors and Actuators A, 54, pp 472-476, 1996.
    [22] T. Mineta, S. Kobayashi, Y. Watanabe, S. Kanauchi, I. Nakagawa, E. Wuganuma, and M. Esashi, “Three-axis capacitive accelerometer with uniform axial sensitivities,” Journal of Micromechanics and Microengineering, 6, pp 431-435, 1996.
    [23] L. C. Spangler, and C. J. Kemp, “ISAAC: integrate silicon automotive accelerometer,” Sensors and Actuators A, 54, pp 523-529, 1996.
    [24] G. Li, and A. A. Tseng, “Low Stress Packaging of a Micromachined Accelerometer,” IEEE Transactions on Electronics Packaging Manufacturing, 24, N0. 1, pp 18-25, 2001.
    [25] E. Belloy, A. Sayah, and M. A. M. Gijs, “Micromachining of glass inertial sensors,” Journal of Microelectromechanical System, 11, No.1, pp 85-90, 2002.
    [26] W. Weigold, K. Najafi, and S. W. Pang, “Design and fabrication of submicrometer, single crystal Si accelerometer,” Journal of Microelectromechanical Systems, 10, No. 4, pp 518-614, 2001.
    [27] H. Seidel, U. Fritsch, R. Gottinger, J. Schalk, J. Walter, and K. Ambaum, “A Piezoresistive Silicon Accelerometer With Monolithically Integrated CMOS-circuitry,” The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX, Transducers '95, Stockholm, Sweden, June 25- 29,1995, pp. 597-600.
    [28] L. M. Roylance and J. B. Angell, “A batch-fabricated silicon accelerometer,” IEEE Transactions on Electronic Devices,26, pp.1911-1917, 1979.
    [29] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chow, A. M. Fitzgerald, L.Zhang, N.I. Maluf, and T. W. Kenny, “A high-performance planar piezoresistive accelerometer,” Journal of Microelectromechanical Systems, 9, pp 58-66, 2000.
    [30] D. L. DeVoe, and A. P. Pisano, ”A fully surface-micromachined piezoelectric accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1205-1208.
    [31] B. Puers and W. Sansen, “A new uniaxial accelerometer in silicon based on the piezojunction effect,” IEEE Transactions on Electronic Devices, 35, pp.764-770, 1988.
    [32] P. Scheeper, J. O. Gullov, and M. Kofoed, “A piezoelectric triaxial accelerometer,” Journal of Micromechanics and Microengineering, 6, pp 131-133, 1996.
    [33] U. A Dauderstadt, P. M. Sarro, and S. Middelhoek, ”Temperature dependence and drift of a thermal accelerometer,” International Conference on Solid State Sensors and Actuators, Transducers '97, Chicago, Illinois , June. 16-19, 1997, pp. 1209-1212.
    [34] C. H. Liu, and T. W. Kenny, ”A high-precision, wide-bandwidth micromachined tunneling accelerometer,” Journal of Microelectromechanical System, 10, Issue: 3, pp. 425 –433, 2001.
    [35] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, T. W. Kenny, J. D. Grade, and H. K. Rockstad, “Characterization of a high-sensitivity micromachined tunneling accelerometer with micro-g resolution,” Journal of Microelectromechanical Systems, 7, pp 235-244, 1998.
    [36] M. Aikele, K. Bauer, W. Ficker, F. Neubauer, U. Prechtel, J. Schalk, and H. Seidel, “Resonant accelerometer with self-test,” Sensors and Actuators A, 92 , pp. 161-167, 2001.
    [37] H. Luo, G. K. Fedder, and L. R. Carley, “A 1 mG lateral CMOS-MEMS accelerometer,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 502-507.
    [38] H. Xie, and G. K. Fedder, “A CMOS z-axis capacitive accelerometer with comb-finger sensing,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 496-501.
    [39] G. Zhang, H. Xie, L. E. de Rosset, and G. K. Fedder, “A lateral capacitive CMOS accelerometer with structural curl compensation,” IEEE MEMS’99, Orlando, FL, Jan. 17-21, 1999, pp. 606-611.
    [40] J. Wu, G. K. Fedder, and L.R. Carley, “A low-noise low-offset chopper-stabilized capacitive-readout amplifier for CMOS-MEMS accelerometers”, Digest of IEEE International Solid-State Circuits Conference, Volume: 1, 2002, pp. 428-478.
    [41] J.M. Tsai, and G.K. Fedder, “Mechanical Noise-Limited CMOS-MEMS Accelerometers,” IEEE MEMS’05, Miami Beach, FL, Jan.30-Feb. 3, 2005, pp. 630-633.
    [42] C. Hierold, A. Hildebrandt, U. Naher, T. Scheiter, B. Mensching, M. Steger, and R. Tielert, “A pure CMOS surface micromachined integrated accelerometer,” IEEE MEMS’96, San Diego, CA, Jan. 26-29, 1996, pp. 174-179.
    [43] I. Y. Park, C. W. Lee, H. S. Jang, Y. S. Oh, and B. J. Ha, “Capacitive sensing type surface micromachined silicon accelerometer with a stiffness tuning capability,” IEEE MEMS’98, Heidelberg. Germany, Jan. 26-29, 1998, pp. 637-642.
    [44] E. J. J. Kruglick, B. A. Warneke, and K. S. J. Pister, “CMOS 3-axis accelerometers with integrated amplifier,” IEEE MEMS’98, Heidelberg. Germany, Jan. 26-29, 1998, pp. 631-636.
    [45] Y. Yee, M. Park, S. H. Lee, S. Lee, K. Chun,, Y. K. Kim, and D. I. D. Cho, “MAMOS-a novel displacement sensitive transducer for fully digital integrated ac accelerometer,” IEEE MEMS’98, Heidelberg. Germany, Jan. 26-29, 1998, pp. 345 –350.
    [46] H. Takao, H. Fukumoto, and M. Ishida, “Fabrication of a three-axis accelerometer integrated with commercial 0.8 /spl mu/m-CMOS circuits,” IEEE MEMS’00, Miyazaki, Japan, Jan. 23-27, 2000, pp. 781-786.
    [47] H. Xie, L. Erdmann, X. Zhu, K. J. Gabriel, and G. K. Fedder, ” Post-CMOS processing for high-aspect-ratio integrated silicon microstructures,” Journal of Microelectromechanical Systems, 11 Issue: 2, pp. 93-101, 2002.
    [48] R. Bogue, “ MEMS sensors: past, present and future,” Sensor Review, 27 Issue: 1, pp.7 – 13 ,2007.
    [49] A.C.M.Gieles, ” Submmiature Silicon Pressure Transducers”, Digest IEEE ISSCC , Philadelphia , PA , USA.108(1969).
    [50] S. K. Clark, and K. D. Wise, ” Pressure sensitivity in anisotropically etched thin-diaphragm pressure sensors,” IEEE Transactions on Electron Devices, 26 ,pp.1887-1896,1979.
    [51] W. P. Eaton, and J. H. Smith, ” Micromachined pressure sensor; review and recent developments,” Smart Master, Struct. 6, pp.530-539,1997.
    [52] H.-H. Wang, C.-W. Hsu, W.-H. Liao, L.-J. Yang, and C.-L. Dai, ” Micro Pressure Sensors of 50□m Size Fabricated By A Standard CMOS Foundry and A Novel Post Process,” IEEE MEMS 06, Turky, Istanbul, Jan. 22-26 ,2006, pp578~581.
    [53] D. A. Gee, K. E Peterson, and G. T. A. Lovacs, “ MEMS in the Medical Industry,” Sensor ExpoProceeding, Spring, 161 ,1996.
    [54] L. Parameswaran, C. Hsu, and M.A. Schmidt, “A merged MEMS-CMOS process using silicon wafer bonding,” IEDM 1995, Washington DC, USA, Dec.10-13, 1995, pp. 613-616.
    [55] A.D. Dehennis, and K.D. Wise, “A Wireless Microsystem for the Remote Sensing of Pressure, Temperature, and Relative Humidity,” Journal of Microelectromechanical System, 14, No.1, 2005, pp.12-22.
    [56] G. K. Fedder, “CMOS-Based sensors.” IEEE Sensors 2005, Orange County, CA, Oct.30-Nov.3, 2005, pp. 125-128.
    [57] A. Selvakumar, “A multifunctional silicon micromachining technology for high performance microsensors and microactuators,” Ph.D. dissertation, Univ. of Michigan, Ann Arbor, 1997.
    [58] A. Selvakumar, F. Ayazi, and K. Najafi, “A high sensitivity z-axis torsional silicon accelerometer,” in Tech. Dig. IEEE Int. Electron Device Meeting, San Francisco, CA, Dec. 8-11, 1996, pp. 765-768.
    [59] O. Paul, and H. Baltes, “ Novel fully CMOS-compatible vaccuum sensor,” Sensors and Actuators A, 46/47, no.1-3, 1995, pp. 143-146.
    [60] C. Wang, M.-H. Tsai, C.-M. Sun, and W. Fang, “A Novel CMOS Out-of-Plane Accelerometer with Fully-differential Gap-closing Capacitance Sensing Electrodes,” J. Micromech. Microeng , 17, 2007, pp. 1275-1280.
    [61] M.A. Lemkin, M.A. Ortiz, N. Wongkomet, B.E. Boser, and J.H. Smith, “A 3-axis surface micromachined ΣΔ accelerometer,” ISSCC’97, San Francisco, CA, Feb 6-8 1997, pp.202–203.
    [62] H. Xie, G.K. Fedder, Z. Pan, and W. Frey, “Design and Fabrication of An Integrated CMOS-MEMS 3-Axis Accelerometer,” MSM’03, San Francisco, CA, Feb 23-27, 2003, pp 292-295
    [63] M.-H. Tsai, C.-M. Sun, C. Wang, J. Lu, and W. Fang, “A Monolithic 3D Fully-differential CMOS Accelerometer,” IEEE NEMS 2008, Sanya, China, 6-9 Jan, 2008, pp.1067-1170.
    [64] H. Takao, H. Fukumoto, and M. Ishida, “A CMOS Integrated Three-Axis Accelerometer Fabricated With Commercial Submicrometer CMOS Technology and Bulk-Micromachining,” IEEE Transactions on Electron Devices, 48, No.9, pp. 1961-1968, 2001.
    [65] H. Qu, D. Fang, and H. Xie, “A Monolithic CMOS-MEMS 3-Axis Accelerometer With a Low-Noise, Low-Power Dual-Chopper Amplifier,” IEEE Sensors J., 8, pp.1511-1518, 2008.
    [66] K. Kwon, and S. Park, “A bulk-micromachined three-axis accelerometer using silicon direct bonding technology and polysilicon layer,” Sensors and Actuators A, 66, pp. 250-255, 1998.
    [67] Xuan Bao Hao Crop. , http://www.davidlu.net/spinonglass.htm
    [68] 顏重光,” 汽車胎壓監視系統的設計方案,”電子工程專輯, March, 2005.
    [69] Freescale Semiconductor, “ Tire Pressure Monitoring System Face sheet,” 2009, Rev.11
    [70] Freescale semiconductor, “TPMS WHITE PAPER: Freescale Single-Package Tire Pressure Monitoring System (TPMS),” 2007, Rev 0.
    [71] S.J. Sherman, “Monolithic Accelerometer” U.S.A Patent No. 5345824S .Analog Devices, Inc. Sep.13, 1994.
    [72] L.R. Carley, M.L. Reed, and G.K. Fedder “Microelectromechanical structure and process of making same” U.S.A Patent No. 5717631 .Carnegie Mellon University. Feb.10, 1998.
    [73] H. Luo, G. Zhang, L.R. Carley, and G.K Fedder, “A Post-CMOS Micromachined Lateral Accelerometer,” Journal of Microelectromechanical System, 11, 2002, pp.188-195.
    [74] H. Lakdawala, and G.K. Fedder, “Temperature stabilization of CMOS capacitive accelerometer,” Journal of Microelectromechanical System, 13, 2004, pp.559-566.
    [75] K. Klaus, K. Norbert, K. Holger, and M. Wilfried, “Capacitive pressure sensor with monolithically integrated CMOS readout circuit for high temperature applications,” Sensors and Actuators A, 97-98, 2002, pp. 83-87.
    [76] E. Socher, O. Degani, and Y. Nemirovsky, “Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors,” Sensors and Actuators A, 71, 1998, pp. 107-115.
    [77] H. Luo, X. Zhu, H. Lakdawala, R. Carley, and G. Fedder, “A copper CMOS-MEMS Z-axis gyroscope,” MEMS '02, Las Vegas, NV, January 20-24, 2002, pp. 631 – 634.
    [78] H. Xie, and G. Fedder, “Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope,” IEEE Sensors Journal, 3, pp. 622-631.
    [79] M. Graf, R. Jurischka, D. Barrettino, and A. Hierlemann, “3D nonlinear modeling of microhotplates in CMOS technology for use as metal-oxide-based gas sensors,” J. Micromech. Microeng, 15, 2005, pp. 190-200.
    [80] O. Degani, D. Seter, E. Socher, S. Kaldor, and Y. Nemirovsky, “Micromachined accelerometer with modulated integrative differential optical sensing,” Electronics Letters, 34, 1998, pp. 654 – 655
    [81] National Sandia Lab, www.sandia.gov.
    [82] G.K. Fedder, S. Santhanam, M.L. Reed, S.C. Eagle, D.F. Guillou, M.S-C. Lu, and L.R. Carley, “Laminated High-Aspect-Ratio Microstructures in a Conventional CMOS Process,” Sensors and Actuators A, 57, no.2, 1997, pp. 103-110.
    [83] C.-L. Dai, F.-Y. Xiao, Y.-Z. Juang and C-F Chiu, “An approach to fabricating microstructures that incorporate circuits using a post-CMOS process,” J. Micromech. Microeng, 15, no.1, 2005, pp.98-103.
    [84] M. Y. Afridi, J. S. Suehle, M. E. Zaghloul, D.W. Berning, A. R. Hefiner, R.E. Cavicchi, S. Semancik, C. B. Montgomery, and C.J. Taylor, “A monolithic CMOS microhotplate-based gas sensor system,”IEEE Sensor Journal, 2, No.6,2002,pp.644-655
    [85] J. Neumann, and K. Gabriel, “CMOS-MEMS Membrane for Audio-Frequency Acoustic Actuation,” Sensors and Actuators A, 95, Issue 2-3, 2002, pp. 175-182.
    [86] Infineon Technologies, www.infineon.com.
    [87] C. Hagleitner, D.Lange, A. Hierlemann, O. Brand, and H. Baltes.“ CMOS Single-Chip Gas Detection System Comprising Capacitive, Calorimetric and Mass-Sensitive Microsensors, ”IEEE Journal of Solid-State Circuits, 37, No.12. 2002, pp.1867-1878.
    [88] P. Dong, X. Li, H. Yang, H. Bao, W. Zhou, S. Li, and S. Feng, “High-Performance Monolithic Triaxial Piezoresistive Shock Accelerometers,” Sensors and Actuatirs A, 141, pp. 339-346, 2008.
    [89] J. Chae, H. Kulah, and K. Najafi, “A Monolithic Three-Axis Micro-g Micromachined Silicon Capacitive Accelerometer,” Journal of Microelectromechanical System, 14, pp. 235-241, 2005.
    [90] Analog Device Inc., “ADXL 335- Small, Low Power, 3-Axis ±3 g Accelerometer,” July, 2009, Rev. A.
    [91] M.A. Lemkin, B.E. Boser, D. Auslander, and J.H. Smith, “A 3-Axis Balanced Accelerometer Using a Single Proof-Mass,” Transducer’97, Chicago, IL, 16-19 June, 1997, pp.1185-1188.
    [92] C.-M. Sun, C.-W. Wang, and W. Fang, “On the Sensitivity Improvement of CMOS Capacitive Accelerometer,” Sensors and Actuators A, 141, pp 347-352, 2008.
    [93] H. Qu, and H. Xie,“ Process development for CMOS-MEMS sensors with robust electrically isolated bulk silicon microstructures,” J. Micromech. Microeng. 16, no. 5, pp. 1153-1161, 2007.
    [94] P. J. Gilgunn, and G.K. Fedder,“ Flip-chip Integrated SOI-CMOS-MEMS fabrication technology, ” in Solid-State Sensors, Actuators and Microsystems Workshop Hilton Head Island, South Carolina, June 1-5, 2008, pp. 10-13
    [95] S. E. Alper, Y. Temiz, and T.Akin,“ A Compact Angular Rate Sensor System Using a Fully Decoupled Silicon-on-Glass MEMS Gyroscope, ” Journal of Microelectromechanical Systems,17, no. 6, 2008.
    [96] A. Wung, R.V. Park, K.J. Rebello and G.K. Fedder, “Tri-axial high-g CMOS-MEMS capacitive accelerometer array”, IEEE MEMS’08, Tuason, AZ, Jan 13-17, 2008, pp. 876 – 879.
    [97] M. W. Judy, H. R. Samuels, “Inertial Sensor,” Patent No.: 7363816 B2, Apr. 29, 2008.
    [98] A. C. McNeil, G. Li, D. N. Koury, Jr., “Single proof mass, 3axis MEMS Transducer,” Patent No.: 6845670 B2, Aug. 30, 2005.
    [99] Y. Watanabe, T. Mitsui, T. Mineta, Y. Matsu, and K. Okada, “SOI micromachined 5-axis motion sensor using resonant electrostatic drive and non-resonant capacitive detection mode,” Sensors and Actuators A, 130-131, pp 116-123, 2006.
    [100] 國科會精密儀器發展中心,”微機電系統技術與應用”國科會精密儀器發展中心, 2003.
    [101] 胡馨華, “新型<111>單晶矽微加速度計之設計製造與測試,” 清華大學博士論文,2003.
    [102] 梁凱智,“CMOS製程整合電熱致動與壓阻感測之元件開發,”清華大學碩士論文,2004.
    [103] 王傳蔚, “新型單石化CMOS MEMS 3軸加速計之開發,” 清華大學博士論文,2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE