簡易檢索 / 詳目顯示

研究生: 葉名哲
Yeh, Ming-Jhe
論文名稱: 具車輛至電網及電網至車輛雙向操作能力之電動車輛切換式磁阻馬達驅動系統
A SWITCHED-RELUCTANCE MOTOR DRIVE FOR ELECTRIC VEHICLES WITH GRID-TO-VEHICLE AND VEHICLE-TO-GRID BIDIRECTIONAL OPERATION CAPABILITIES
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員: 廖聰明
劉添華
龔應時
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 191
中文關鍵詞: 切換式磁阻馬達電動車輛蓄電池電壓控制電流控制雙向變頻器單相三線式緊急電源車上充電器功率因數矯正電網至車輛車輛至電網
外文關鍵詞: Switched-reluctance motor, electric vehicle, battery, voltage control, current control, bidirectional inverter, single-phase three-wire, emergency source, on-board charger, power factor correction, grid to vehicle, vehicle to grid
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發一用於電動車之蓄電池供電切換式磁阻馬達驅動系統,具電網至車輛以及車輛至電網操作功能。所開發之馬達系統電力電路使用兩個三相功率模組建構一非對稱橋式轉換器及一雙象限前端直流/直流轉換器,藉由適宜之電流及速度控制安排,以獲得良好驅動特性。並使用換相前移及直流鏈電壓升壓技巧,進一步增進馬達於高速下之驅控性能。此外,透過適當之換相角及前端轉換器開關設定達成馬達之再生煞車。
    當車輛處於閒置狀態,利用馬達驅動系統之固有元件可組構成一具前端轉換器之雙向單相三線式變頻器。48V蓄電池電壓經由前端升壓轉換器建立良好調節特性之400V直流鏈。接著由變頻器產出60Hz 220/110V 交流電源,由所採之差模及共模控制,可得良好之變頻器輸出交流電壓波形。於獨立能源管理操控上,所建單相三線變頻器可供電至負載,執行車輛至家庭供電之操作功能。
    除獨立操作模式外,所開發變頻器亦可安排執行電網至車輛以及車輛至電網操作功能。因變頻器擁有車輛蓄電池與單相三線電網間之雙向功率潮流能力,在功率調控安排上,市電可對車上蓄電池從事具功率因數矯正充電;反之,亦可令蓄電池對市電傳送功率。此外,於併網模式下,負載之所有虛功率及諧波功率可由蓄電池供電之變頻器補償之。所建構系統之控制法則均為全數位化實現,並以一些模擬及實測結果驗證其操作效能。


    This thesis presents the establishment of a switched-reluctance motor (SRM) drive for electric vehicles (EVs) incorporating with grid to vehicle (G2V) and vehicle to grid (V2G) operation capabilities. The developed SRM drive consists of a two-quadrant front-end DC/DC converter and an asymmetric bridge converter, which are formed using two three-phase power modules. Well driving characteristics are obtained via proper current and speed controls. The commutation advanced shift as well as voltage boosting approaches are further applied to enhance the driving performance under high speed. In addition, the regenerative braking is also achieved by properly setting the commutation of SRM converter and the switching of front-end converter.
    In idle condition, a bilateral single-phase three-wire (1P3W) inverter with the same front-end stage is constructed using the embedded motor drive power devices. The 48V battery voltage is boosted by the front-end converter to established a well-regulated 400V DC-link. Then the 60Hz 220V/110V AC voltage outputs are generated from the followed inverter. Good inverter output waveforms are yielded by applying differential mode (DM) and common mode (CM) control approaches. In autonomous energy management operation, the 1P3W inverter can power the loads to perform vehicle-to-home (V2H) operation.
    In addition to autonomous mode, the inverter can be arranged to perform G2V and V2G operations. The developed bidirectional inverter system possesses flexible bidirectional power flow capability between vehicle battery and 1P3W utility grid. Hence, power conditioning control operation can be arranged to perform the EV battery charging from mains with power factor correction, and conversely, the programmed power transfer from battery to utility grid. Moreover, it can also be achievable to let all the load reactive and harmonic powers be compensated by the battery powered inverter in grid-connected operation cases. All the controls of the developed system are realized fully digitally. And some simulated and experimental results are provided to verify its operating performance.

    摘要…………………………………………………………………… a 致謝…………………………………………………………………… b 目錄…………………………………………………………………… c 第一章、簡介………………………………………………………… d 第二章、切換式磁阻馬達驅動系統之基礎..……………………… f 第三章、切換式磁阻馬達驅動系統及其驅動模式操控…………… g 第四章、所建蓄電池供電切換式磁阻馬達驅動系統之獨立變頻器模式操控…………………………………………………………………… h 第五章、所建蓄電池供電切換式磁阻馬達驅動系統之電網至車輛模式操控…………………………………………………………………… i 第六章、所建蓄電池供電切換式磁阻馬達驅動系統之車輛至電網 模式操控…………………………………………………… j 第七章、結論………………………………………………………… k 附錄: 英文論文……………………………………………………… m

    A. Green Energy
    [1] G. M. Masters, Renewable and efficient electric power systems, Wiley-Interscience, New Jersey, 2004.
    [2] M. Hashem Nehrir and Caisheng Wang, Modeling and control of fuel cells, IEEE Press, New Jork, 2009.
    [3] J. Arai, K. Iba, T. Funabashi, Y. Nakanishi, K. Koyanagi and R. Yokoyama, “Power electronics and its applications to renewable energy in Japan,” IEEE Circuits Syst. Mag., vol. 8, no. 3, pp. 52-66, 2008.
    [4] I. Cvetkovic, T. Thacker, Dong Dong, G. Francis, V. Podosinov, D. Boroyevich, F. Wang, R. Burgos, G. Skutt and J. Lesko, “Future home uninterruptible renewable energy system with vehicle-to-grid technology,” in Proc. IEEE ECCE, 2009, pp. 2675-2681.
    [5] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang and F. C. Lee, “Future electronic power distribution systems a contemplative view,” IEEE OPTIM, 2010, pp. 1369-1380.
    [6] N. Hatziargyriou, H. Asano, R. Iravani and C. Marnay, “Microgids,” IEEE Power Energy, vol. 5, no. 4, pp. 78-94, 2007.
    [7] J. Mitra and S. Suryanarayanan, “System analytics for smart microgrids,” IEEE PES, pp. 1-4, 2010.
    [8] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Trans. Power Electron., 2011.
    B. Electric Vehicles and Batteries
    [9] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., vol. 54, no. 2, pp. 736-770, 2005.
    [10] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage-boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
    [11] Gao Yimin and M. Ehsani. “Design and control methodology of plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 633-640, 2010.
    [12] S. G. Wirasingha and A. Emadi “Classification and review of control strategies for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., vol. 60, no. 1, pp. 111-122, 2011.
    [13] M. Ehsani, K. M. Rahman and H. A. Toliyat, “Propulsion system design of electric and hybrid vehicles,” IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 19-27, 1997.
    [14] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
    [15] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006.
    [16] K. Watanabe, S. Aida, A. Komatsuzaki and I. Miki, “Driving force characteristics of 40kW switched reluctance motor for electric vehicle,” in Proc. ICEMS, 2007, pp. 1894-1898.
    [17] X. D. Xue, K. Cheng and N. C. Cheung, “Selection of electric motor drives for electric vehicles,” in Proc. IEEE AUPEC, 2008, pp. 1-6.
    [18] H. Oman, “On-board energy and power management of electric vehicles: effect of battery type.” in Proc. IEEE DASC, 1998, vol. 2, pp. I43/1-I43/6.
    [19] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
    [20] M. S. Duvall, “Battery evaluation for plug-in hybrid electric vehicles,” in Proc. IEEE VPPC, 2005.
    [21] A. Cooper and P. Moseley, “Progress in the development of lead-acid batteries for hybrid electric vehicles,” in Proc. IEEE VPPC, 2006, pp. 1-6.
    [22] A. F. Burke, “Batteries and ultracapacitors for electric, hybrid and fuel cell vehicles,” in Proc. IEEE, vol. 95, no. 4, 2007, pp. 806-820.
    [23] S. Vazquez, S. M. Lukic, E. Galvan, L. G. Franquelo and J. M. Carrasco, “Energy storage systems for transport and grid applications” IEEE Trans. Ind. Electron., vol. 57, no. 12, pp. 3881-3895, 2010.
    [24] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
    [25] M. Brandl, H. Gall, M. Wenger, V. Lorentz, M. Giegerich, F. Baronti, G. Fantechi, L. Fanucci, R. Roncella, R. Saletti, S. Saponara, A. Thaler, M. Cifrain and W. Prochazka, “Batteries and battery management systems for electric vehicles,” in Proc. IEEE DATE, 2012, pp. 971-976.
    [26] K. Yoshimi, M. Osawa, D. Yamashita, T. Niimura, R. Yokoyama, T. Masuda, H. Kondou and T. Hirota, “Practical storage and utilization of household photovoltaic energy by electric vehicle battery,” in Proc. IEEE ISGT, 2012, pp. 1-8.
    C. Fundamentals of SRM
    [27] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
    [28] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
    [29] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
    [30] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp. 2104-2110.
    [31] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
    [32] P. Rafajdus, V. Hrabovcova and P. Hudak, “Investigation of losses and efficiency in switched reluctance motor,” in Proc. EPE-PEMC, 2006, pp. 296-301.
    [33] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp. 1690-1693.
    [34] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2008.
    [35] N. Schofield, S. A. Long, D. Howe and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116-122, 2009.
    [36] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan and I. Husain, “Switched reluctance and permanent magnet brushless motors in highly dynamic situations: a comparison in the context of electric brakes,” IEEE Mag. Ind. Appl., vol. 15, no. 4, pp. 35-43, 2009.
    [37] P. C. Desai, M. Krishnamurthy, N. Schofield and A. Emadi, “Novel switched reluctance machine configuration with higher number of rotor poles than stator poles: concept to implementation,” IEEE Trans. Ind., vol. 57, no. 2, pp. 649-659, 2010.
    [38] M. Takeno, A. Chiba, N. Hoshi, S. Ogasawara and M. Takemoto, “Power and efficiency measurements and design improvement of a 50kW switched reluctance motor for hybrid electric vehicles,” in Proc. IEEE ECCE, 2011, pp. 1495-1501.
    D. SRM Converters
    [39] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
    [40] D. H. Jang, I. Husain and M. Ehsani, “Modified (n+1) switch converter for switched reluctance motor drives,” in Proc. IEEE PESC, 1995, vol. 2, pp. 1121-1127.
    [41] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
    [42] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
    [43] Y. H. Yoon, S. H. Song, T. W. Lee, C. Y. Won and Y. R. Kim, “High performance switched reluctance motor drive for automobiles using C-dump converters,” in Proc. IEEE ISIE, 2004, pp. 969-974.
    [44] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Elect. Power Applicat., 1993, vol. 140, no. 5, pp. 316-322.
    [45] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., 2000, vol. 147, no. 5, pp. 337-344.
    [46] D. H. Lee, S. H. Seok and J. W. Ahn, “SR drive for hydraulic pump using a novel passive boost converter,” in Proc. IEEE ECCE, 2009, pp. 282-287.
    [47] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 893-898.
    [48] J. Luo and Q. Zhan, “A novel soft-switching converter for switched reluctance motor: analysis, design and experimental results,” in Proc. IEEE IEMDC, 2005, pp. 1955-1961.
    [49] H. Goto, H. J. Guo and O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
    [50] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
    [51] H. C. Chang and C. M. Liaw, “An integrated driving/charging switched reluctance motor drive using three-phase power module,” IEEE Trans. Ind. Electron., vol. 58, no. 5, pp. 1763-1775, 2011.
    [52] FCAS50SN60 smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS50SN60.pdf.
    [53] FCAS20DN60BB smart power module for SRM, www.fairchildsemi.com/ds/ FC/FCAS20DN60BB.pdf.
    E. Modeling and Dynamic Control
    [54] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Applicat., vol. 36, pp. 714-722, 2000.
    [55] V. Vujicic and S. N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
    [56] S. Liu, Z. Zhao, S. Meng and J. Chai, “A nonlinear analytical model for switched reluctance motor,” in Proc. IEEE TENCON, 2002, vol. 3, pp. 2034-2037.
    [57] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
    [58] L. Xu and E. Ruckstadter, “Direct modeling of switched reluctance machine by coupled field-circuit method,” IEEE Trans. Energy Convers., vol. 10, no. 3, pp. 446-454, 1995.
    [59] B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1675-1683, 2001.
    [60] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magnetics, vol. 34, pp. 2147-2149, 1998.
    [61] X. Wang and J. S. Lai, “Small-signal modeling and control for PWM control of switched reluctance motor drives,” in Proc. IEEE PESC, 2002, vol. 2, no. 1, pp. 546-551.
    [62] K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magnetics, vol. 39, no. 3, pp. 1806-1812, 2003.
    [63] A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1207-1224, 1999.
    [64] Z. Lin, D. S. Reay, B. W. Williams and X. He, “Online modeling for switched reluctance motors using B-Spline neural networks,” IEEE Trans. Ind. Electron., vol. 54, no. 6, pp. 3317-3322, 2007.
    [65] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Proc. IEEE IAS, 1996, vol. 1, pp. 68-75.
    [66] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
    [67] G. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. Ind. Applicat. Conf., 2002, vol. 2, pp. 1212-1218.
    [68] R. B. Inderka, M. Menne and R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
    [69] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003.
    [70] L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
    [71] M. R. Benhadria, K. Kendouci and B. Mazari, “Torque ripple minimization of switched reluctance motor using hysteresis current control,” in Proc. IEEE ISIE, 2006, pp. 2158-2162.
    [72] R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Proc. Elect. Power Applicat., vol. 3, no. 5, pp. 453-460, 2009.
    [73] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
    [74] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. WCICA, 2006, vol. 1, pp. 2490-2493.
    [75] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE Proc. Elect. Power Applicat., 2003, vol. 150, no. 2, pp. 193-200.
    [76] J. Uffe and J. W. Ahn, “Nonlinear, time variant speed control of a single phase hybrid switched reluctance motor,” in Proc. IEEE INTELEC, 2009, pp. 1-5.
    [77] G. John and A. R. Eastham “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993. pp. 317-320.
    [78] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
    [79] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applicat., 2001, vol. 148, no. 4.
    [80] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
    [81] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
    [82] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
    [83] T. Koblara, “Implementation of speed controller for switched reluctance motor drive using fuzzy logic,” in Proc. IEEE OPTIM, 2008, pp. 101-105.
    F. Commutation Instant Tuning
    [84] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
    [85] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
    [86] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
    [87] R. Orthmann and H. P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. IEE Conf. Power Electron. and Applicat., 1993, vol. 6, pp. 20-25.
    [88] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
    [89] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
    [90] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
    G. Front-End Converter and Regenerative Braking Control
    [91] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC.1994, vol. 1, pp. 381-389.
    [92] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
    [93] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
    [94] J. M. Liu, “Development of a switched-reluctance motor drive for electric vehicles with driving-charging-discharging functions,” M.S. thesis, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2011.
    [95] S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
    [96] K. T. Weng and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1676-1681, 2000.
    [97] D. A. Torrey, “Switched reluctance generators and their controls,” IEEE Trans. Ind. Electron., vol. 49, no.1, pp. 3-14, 2002.
    [98] I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched reluctance generators,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1062-1072, 2006.
    [99] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
    H. Vehicle to Home and PWM Inverters
    [100] H. Oyobe, M. Nakamura, T. Ishikawa, S. Sasaki, Y. Minezawa, Y. Watanabe and K. Asano, “Development of ultra low-cost, high-capacity power generation system using drive motor and inverter for hybrid vehicle,” in Conf. Rec. IEEE-IAS Annu. Meeting, 2005, vol. 3, pp. 2029-2034.
    [101] Xiaohu Zhou, Gangyao Wang, S. Lukic, S. Bhattacharya and A. Huang, “Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE ECCE., pp. 3930-3936, 2009.
    [102] R. Surada and A. Khaligh, “A novel approach towards integration of propulsion machine inverter with energy storage charger in plug-in hybrid electric vehicles,” in Proc. IEEE IECON, 2010, pp. 2493-2498.
    [103] N. Mohan, T. M. Undeland and W. P. Robbins, Power Electronics: Converters, Applications and Design, 1st ed. New York: John Wiley & Sons, 2003.
    [104] B. K. Bose, Modern Power Electronics and AC Drive, New Jersey: Prentice-Hall, 2002.
    [105] X. Yaosuo, C. Liuchen and S. Pinggang, “Recent developments in topologies of single-phase buck-boost inverters for small distributed power generators: an overview,” in Proc. IPEMC, 2004, vol. 3, pp. 1118-1123.
    [106] Y. Wue, L. Chang, S. B. Kjaer, J. Bordonau and T. Shimizu, “Topologies of single-phase inverters for small distributed power generators: an overview,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1305-1314, 2004.
    [107] R. González, J. López, P. Sanchis and L. Marroyo, “Transformerless inverter for single-phase photovoltaic systems,” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693-697, 2007.
    [108] B. S. Prasad, S. Jain and V. Agarwal, “Universal single-stage grid-connected inverter,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 128-137, 2008.
    [109] S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” IEE Proc. Electr. Power Appl., vol. 141, no. 4, pp. 197-205, 1994.
    [110] J. Wang, F. Z. Peng, J. Anderson, A. Joseph and R. Buffenbarger, “Low cost fuel cell inverter system for residential power generation,” in Proc. APEC, vol. 1, pp. 367-373, 2004.
    [111] C. G. C. Branco, C. M. T. Cruz, R. P. Torrico-Bascope and F. L. M. Antunes, “A non-isolated single-phase UPS topology with 110V/220V input-output voltage,” in Proc. IEEE IECON, 2005, pp. 930-935.
    [112] L. Y. Lu, C. L. Wang, Ai Ming, T. Y. Chen, H. C. Chang and C. M. Liaw, “Development of a single-phase three-wire inverter and its robust waveform control,” R.O.C. 30th Symposium on Electrical Power Engineering, 2009, pp. E016-1-E016-6.
    I. Vehicle to Grid
    [113] B. Kramer, S. Chakraborty and B. Kroposki, “A review of plug-in vehicles and vehicle-to-grid capability,” in Proc. IEEE IECON, 2008, pp. 2278-2283.
    [114] W. Kramer, S. Chakraborty, B. Kroposki, A. Hoke, G. Martin and T. Markel, “Grid interconnection and performance testing procedures for vehicle-to-grid (V2G) power electronics,” Technical Report NREL/CP-5500-54505 May 2012.
    [115] Di Wu, Hao Chen, T. Das and D. C. Aliprantis, “Bidirectional power transfer between HEVs and grid without external power converters” in Proc. ENERGY, 2008, pp. 1-6.
    [116] Y. Ota, H. Taniguchi, T. Nakajima, K. M. Liyanage, J. Baba and A. Yokoyama, “Autonomous distributed V2G (vehicle-to-grid) considering charging request and battery condition,” in Proc. IEEE ISGT, 2010, pp. 1-6.
    [117] D. C. Erb, O. C. Onar and A. Khaligh, “Bi-directional charging topologies for plug-in hybrid electric vehicles,” in Proc. APEC, 2012, pp. 2066-2072.
    [118] O. Hegazy, J. Van Mierlo and P. Lataire, “Design and control of bidirectional DC/AC and DC/DC converters for plug-in hybrid electric vehicles,” in Proc. POWERENG, 2011, pp. 1-7.
    [119] M. C. Kisacikoglu, B. Ozpineci and L. M. Tolbert, “Effects of V2G reactive power compensation on the component selection in an EV or PHEV bidirectional charger,” in Proc. IEEE ECCE, 2010, pp. 870-876.
    J. Switch-Mode Rectifiers
    [120] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, ed., Kluwer Academic Publishers, Norwell Massachusetts, 2001.
    [121] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [122] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D.P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
    [123] M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
    [124] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
    [125] R. Morrison and M. G. Egan, “A new modulation strategy for a buck-boost input AC/DC converter,” IEEE Trans. Power Electron., vol. 16, pp. 34-45, 2001.
    [126] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
    [127] J. Chen, D. Maksimovic and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Trans. Power Electron., vol. 41, pp. 320-329, 2006.
    [128] L. Sollero, V. Serrao, M. Montuoro and A. Romanelli, “Low THD variable load buck PFC converter,” in Proc. PESC, 2008, pp. 906-912.
    [129] H. Laszlo, G. Liu and M. J. Milan, “Design-oriented analysis and performance evaluation of buck PFC front-end,” in Proc. APEC, 2009, pp. 1170-1176.
    [130] S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
    [131] L. Solero, “Nonconventional on on-board charger for electric vehicle propulsion batteries,” IEEE Trans. Veh. Technol., vol. 50, no. 1, pp. 144-149, 2001.
    [132] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
    [133] F. J. Perez-Pinal and I. Cervantes, “Multi-reconfigurable power system for EV applications,” in Proc. EPE-PEMC, 2006, pp. 491-495.
    [134] S. Lacroix, E. Laboure and M. Hilairet, “An integrated fast battery charger for electric vehicle,” in Proc. IEEE VPPC, 2010, pp. 1-6.
    [135] Y. Lee, A. Khaligh and A. Emadi, “Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles,” IEEE Trans. Ind., vol. 58, no. 8, pp. 3970-3980, Oct. 2009.
    [136] S. Haghbin, K. Khan, S. Lundmark, M. Alaküla, O. Carlson, M. Leksell and O. Wallmark, “Integrated chargers for EV’s and PHEV’s: examples and new solutions,” in Proc. ICEM, 2010, pp. 1-6.
    [137] S. Haghbin, S. Lundmark, M. Alakula and O. Carlson, “Grid-connected integrated battery chargers in vehicle applications: review and new solution,” IEEE Trans. Ind. Electron, pp. 1-14, 2012.
    [138] X. Zhou, S. Lukic, S. Bhattacharya and A. Huang, “Design and control of grid-connected converter in bi-directional battery charger for plug-in hybrid electric vehicle application,” in Proc. IEEE VPPC, 2009, pp. 1716-1721.
    K. Others
    [139] J. Y. Chai, Development and control of a switched-reluctance motor drive with power factor correction front-end, Ph.D. Dissertation, Dept. Electric Eng., National Tsing Hua Univ., R.O.C., 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE