研究生: |
鄭雲楷 Cheng, Yun-Kai |
---|---|
論文名稱: |
利用非平衡磁控濺鍍系統在工具鋼上鍍著不同厚度的Ti-Si-N覆膜之機械性質與防蝕性質研究 Influence of thickness on mechanical and corrosion properties of Ti-Si-N coatings on D2 steel by unbalanced magnetron sputtering |
指導教授: |
黃嘉宏
Huang, Jia-Hong 喩冀平 Yu, Ge-Ping |
口試委員: |
李志偉
Lee, Jyh-Wei 駱榮富 Louh, Rong-Fuh |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 104 |
中文關鍵詞: | 鈦矽氮奈米複合膜 、硬度 、殘餘應力 、附著強度 、腐蝕 |
外文關鍵詞: | Ti-Si-N nanocomposite, hardness, residual stress, adhesion strength, corrosion |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用非平衡磁控濺鍍系統在D2工具鋼上鍍著不同厚度的鈦-矽-氮覆膜。其目的在於研究鍍層厚度對鈦-矽-氮覆膜的成分、結構、機械性質與腐蝕抗性的影響,同時也探討鈦介層對鈦-矽-氮覆膜的結構與特性的影響。結果顯示,隨著鍍膜時間增加,鍍層厚度從696 nm成長至3019 nm,最大厚度可達3 μm以上。不同厚度之鈦-矽-氮覆膜的優選方向都呈現 (111) 優選方向。加入矽與鈦介層都可改變鈦-矽-氮覆膜中氮化鈦相的優選方向從 (200) 轉為 (111) 方向。從XRD與XPS的結果得知,本實驗所鍍著的覆膜為一奈米複合結構,由奈米晶的氮化鈦以及非晶形的氮化矽所組成。硬度分布範圍從23 GPa到36 GPa,硬度的變化與鈦-矽-氮覆膜結構中的氮化鈦晶粒尺寸及優選方向有關。由 cos2αsin2 X光繞射方法量測到的殘餘應力值顯示,在奈米複合覆膜中,氮化鈦的殘餘應力並不隨著厚度增加有明顯變化。動態極化掃描的結果顯示,覆膜後的試片在0.5 M硫酸與5 wt%鹽水環境中具有良好的防蝕能力。從刮痕測試與動態極化掃描的結果來看,增加鈦介層有助於增加覆膜的附著性與抗蝕性。
TiSiN nanocomposite coatings with different thickness were deposited on D2 tool steel substrates using unbalance magnetron sputtering (UBMS). The purpose of this study was to investigate the influence of coating thickness on the compositions, structure, mechanical properties, and corrosion resistance of TiSiN coatings. The effect of Ti interlayer on structure and properties of TiSiN coatings was also studied. The coating thickness increased with increasing deposition duration ranging from 696 to 3019 nm and the maximum thickness could reach over 3 μm. TiN (111) was the preferred orientation in all TiSiN coatings. The incorporation of Si or addition of Ti interlayer could change the preferred orientation of TiN phase from (200) to (111) in TiSiN coatings. The results of X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) revealed that the nanocomposite coatings were composed of nanocrystalline TiN and amorphous SiNx. The hardness, ranging from 23 to 36 GPa, was related to the grain size and texture of TiN in TiSiN coatings. The residual stresses of TiN in nanocomposite coatings measured by XRD cos2αsin2ψ method were all compressive and had no significant variation with increasing coating thickness. The results of the potentiodynamic polarization scan indicated that the TiSiN-coated samples possessed good corrosion resistance in both 0.5 M H2SO4 and 5 wt% NaCl solutions. From the results of scratch test and potentiodynamic polarization scan, the addition of Ti interlayer was beneficial for the adhesion strength and corrosion resistance of the TiSiN coatings.
[1] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surface and Coatings Technology 41/2 (1990) 191.
[2] H. Holleck, Material selection for hard coatings, Journal of Vacuum Science and Technology a-Vacuum Surfaces and Films 4/6 (1986) 2661.
[3] W.D. Sproul, Very high-rate reactive sputtering of TiN, ZrN and HfN, Thin Solid Films 107/2 (1983) 141.
[4] B. Navinsek, P. Panjan, I. Milosev, Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures, Surface and Coatings Technology 97/1-3 (1997) 182.
[5] R. Buhl, H.K. Pulker, E. Moll, TiN coatings on steel, Thin Solid Films 80/1–3 (1981) 265.
[6] S. Veprek, S. Reiprich, A concept for the design of novel superhard coatings, Thin Solid Films 268/1-2 (1995) 64.
[7] S. Veprek, The search for novel, superhard materials, Journal of Vacuum Science and Technology A 17/5 (1999) 2401.
[8] S. Veprek, H.D. Mannling, P. Karvankova, J. Prochazka, The issue of the reproducibility of deposition of superhard nanocomposites with hardness of ≧ 50 GPa, Surface and Coatings Technology 200/12-13 (2006) 3876.
[9] S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H.D. Mannling, P. Nesladek, G. Dollinger, A. Bergmaier, Composition, nanostructure and origin of the ultrahardness in nc-TiN/a-Si3N4/a- and nc-TiSi2 nanocomposites with Hv= 80 to ≧ 105 GPa, Surface and Coatings Technology 133 (2000) 152.
[10] P. Steyer, A. Mege, D. Pech, C. Mendibide, J. Fontaine, J.F. Pierson, C. Esnouf, R. Goudeau, Influence of the nanostructuration of PVD hard TiN-based films on the durability of coated steel, Surface and Coatings Technology 202/11 (2008) 2268.
[11] T. Hirai, S. Hayashi, Preparation and some properties of chemically vapour-deposited Si3N4-TiN composite, Journal of Materials Science 17/5 (1982) 1320.
[12] S. Veprek, S. Mukherjee, H.D. Mannling, J.L. He, On the reliability of the measurements of mechanical properties of superhard coatings, Materials Science and Engineering A 340/1-2 (2003) 292.
[13] H.C. Barshilia, B. Deepthi, A.S. Arun Prabhu, K.S. Rajam, Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering, Surface and Coatings Technology 201/1 (2006) 329.
[14] J.S. Colligon, V. Vishnyakov, R. Valizadeh, S.E. Donnelly, S. Kumashiro, Study of nanocrystalline TiN/Si3N4 thin films deposited using a dual ion beam method, Thin Solid Films 485/1–2 (2005) 148.
[15] C. Zhang, J. Luo, W. Li, D. Chen, Mechanical properties of nanocomposite TiN/Si3N4 films Synthesized by ion beam assisted deposition (IBAD), Journal of Tribology 125/2 (2003) 445.
[16] C.L. Chang, J.H. Chen, P.C. Tsai, W.Y. Ho, D.Y. Wang, Synthesis and characterization of nano-composite Ti-Si-N hard coating by filtered cathodic arc deposition, Surface and Coatings Technology 203/5-7 (2008) 619.
[17] M. Ohring, The Materials Science of Thin Films, Academic Press, 1992.
[18] P.J. Kelly, R.D. Arnell, Magnetron sputtering: a review of recent developments and applications, Vacuum 56/3 (2000) 159.
[19] S.M. Rossbagel, Sputter Deposition, Opportunities for Innovation, Techonic Publishing Co., 1995.
[20] L.E. Toth, Transition Metal Carbides and Nitrides, Academic Press, New York, 1971.
[21] J. L.Murray, Phase Diagram of Binary Titanium Alloys, ASM International, Ohio, 1987.
[22] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197/1–2 (1991) 117.
[23] L. Hultman, J.E. Sundgren, J.E. Greene, Formation of polyhedral N2 bubbles during reactive sputter deposition of epitaxial TiN(100) films, Journal of Applied Physics 66/2 (1989) 536.
[24] H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, Nanoindentation studies of single-crystal (001)-, (011)-, and (111)-oriented TiN layers on MgO, Journal of Applied Physics 80/12 (1996) 6725.
[25] J.O. Kim, J.D. Achenbach, P.B. Mirkarimi, M. Shinn, S.A. Barnett, Elastic constants of single-crystal transition-metal nitride films measured by line-focus acoustic microscopy, Journal of Applied Physics 72/5 (1992) 1805.
[26] Y. Katsuhiro, N. Kazuhiro, K. Tomohiko, M. Katsuhisa, O. Masami, Resistivities of titanium nitride films prepared onto silicon by an ion beam assisted deposition method, Journal of Physics D: Applied Physics 37/7 (2004) 1095.
[27] B.F. Chen, W.L. Pan, G.P. Yu, J. Hwang, J.H. Huang, On the corrosion behavior of TiN-coated AISI D2 steel, Surface and Coatings Technology 111/1 (1999) 16.
[28] J.H. Kim, K.W. Chung, Microstructure and properties of silicon nitride thin films deposited by reactive bias magnetron sputtering, Journal of Applied Physics 83/11 (1998) 5831.
[29] H. Okamoto, N-Si (nitrogen-silicon), Journal of Phase Equilibria and Diffusion 26/3 (2005) 293.
[30] http://www.accuratus.com/silinit.html
[31] F.L. Riley, Silicon nitride and related materials, Journal of the American Ceramic Society 83/2 (2000) 245.
[32] S.K. Ghosh, T.K. Hatwar, Preparation and characterization of reactively sputtered silicon nitride thin films, Thin Solid Films 166/0 (1988) 359.
[33] L. Shizhi, S. Yulong, P. Hongrui, Ti-Si-N films prepared by plasma-enhanced chemical vapor deposition, Plasma Chemistry and Plasma Processing 12/3 (1992) 287.
[34] S. Veprek, G.J Maritza. Veprek-Heijman, The formation and role of interfaces in superhard nc-MenN/a-Si3N4 nanocomposites, Surface and Coatings Technology 201/13 (2007) 6064.
[35] S. Veprek, The origin of superhardness in TiN/Si3N4 nanocomposites: the role of the interfacial monolayer, High Pressure Research 26/2 (2006) 119.
[36] F.C. Frank. J.D. Eshelby, F.R.N. Nabarro, The equilibrium of linear arrays of dislocations, Philosophical Magazine Series 7 42/327 (1951) 351.
[37] C.H. Ma, J.H. Huang, H. Chen, Nanohardness of nanocrystalline TiN thin films, Surface and Coatings Technology 200/12 (2006) 3868.
[38] V. Yamakov, D. Wolf, M. Salazar, S.R. Phillpot, H. Gleiter, Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation, Acta Materialia 49/14 (2001) 2713.
[39] M. Murayama, J. Howe, H. Hidaka, S. Takaki, Atomic-level observation of disclination dipoles in mechanically milled, nanocrystalline Fe, Science 295/5564 (2002) 2433.
[40] I. Ovid'ko, Deformation of nanostructures, Science 295/5564 (2002) 2386.
[41] V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Grain-boundary diffusion creep in nanocrystalline palladium by molecular-dynamics simulation, Acta Materialia 50/1 (2002) 61.
[42] J. Schiøtz, K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301/5638 (2003) 1357.
[43] S. Veprek, R.F. Zhang, M.G.J. Veprek-Heijman, S.H. Sheng, A.S. Argon, Superhard nanocomposites: Origin of hardness enhancement, properties and applications, Surface and Coatings Technology 204/12-13 (2010) 1898.
[44] M. Kong, et al., Investigations on the microstructure and hardening mechanism of TiN/Si3N4 nanocomposite coatings, Journal of Physics D: Applied Physics 40/9 (2007) 2858.
[45] X.P. Hu, H.J. Zhang, J.W. Dai, G.Y. Li, M.Y. Gu, Study on the superhardness mechanism of Ti-Si-N nandcomposite films: Influence of the thickness of the Si3N4 interfacial phase, Journal of Vacuum Science and Technology A 23/1 (2005) 114.
[46] S. Veprek, A.S. Argon, R.F. Zhang, Origin of the hardness enhancement in superhard nc-TiN/a-Si3N4 and ultrahard nc-TiN/a-Si3N4/TiSi2 nanocomposites, Philosophical Magazine Letters 87 (2007) 955.
[47] S. Veprek, G.J Maritza. Veprek-Heijman, R.F. Zhang, Chemistry, physics and fracture mechanics in search for superhard materials, and the origin of superhardness in nc-TiN/a-Si3N4 and related nanocomposites, Journal of Physics and Chemistry of Solids 68/5-6 (2007) 1161.
[48] P. Zhang, Z. Cai, W. Xiong, Influence of Si content and growth condition on the microstructure and mechanical properties of Ti–Si–N nanocomposite films, Surface and Coatings Technology 201/15 (2007) 6819.
[49] R.F. Zhang, S. Veprek, Phase stabilities of self-organized nc-TiN/a-Si3N4 nanocomposites and of Ti1-xSxNy solid solutions studied by ab initio calculation and thermodynamic modeling, Thin Solid Films 516/8 (2008) 2264.
[50] D.Y. Ma, S.L. Ma, K.W. Xu, S. Veprek, Effecting of oxygen and chlorine on nano-structured TiN/Si3N4 films hardness, Materials Letters 59/7 (2005) 838.
[51] S. Veprek, P. Karvankova, M.G.J. Veprek-Heijman, Possible role of oxygen impurities in degradation of nc-TiN/a-Si3N4 nanocomposites, Journal of Vacuum Science and Technology B 23/6 (2005) L17.
[52] C.L. Chang, C.T. Lin, P.C. Tsai, W.Y. Ho, W.J. Liu, D.Y. Wang, Mechanical and corrosion properties of (Ti,Si)N coating synthesized by cathodic arc plasma evaporation, Surface and Coatings Technology 202/22-23 (2008) 5516.
[53] J.H. Park, S.H. Kwon, M.H. Lee, K.H. Kim, Effect of Si Addition on the Corrosion Behavior of Ti-Si-N Coatings Prepared by a Hybrid Coating System, Electrochemical and Solid State Letters 12/3 (2009) C13.
[54] M.S. Ahmed, P. Munroe, Z.-T. Jiang, X. Zhao, W. Rickard, Z.-f. Zhou, L.K.Y. Li, Z. Xie, Corrosion behaviour of nanocomposite TiSiN coatings on steel substrates, Corrosion Science 53/11 (2011) 3678.
[55] F. Vaz, L. Rebouta, R.M.C. da Silva, M.F. da Silva, J.C. Soares, Characterization of titanium silicon nitride films deposited by PVD, Vacuum 52/1-2 (1999) 209.
[56] L. Rebouta, C.J. Tavares, R. Aimo, Z. Wang, K. Pischow, E. Alves, T.C. Rojas, J.A. Odriozola, Hard nanocomposite Ti-Si-N coatings prepared by DC reactive magnetron sputtering, Surface and Coatings Technology 133-134 (2000) 234.
[57] L. Chen, Y. Du, S.Q. Wang, A.J. Wang, H.H. Xu, Mechanical properties and microstructural evolution of TiN coatings alloyed with Al and Si, Materials Science and Engineering: A 502/1–2 (2009) 139.
[58] A.R. Bushroa, H.H. Masjuki, M.R. Muhamad, B.D. Beake, Optimized scratch adhesion for TiSiN coatings deposited by a combination of DC and RF sputtering, Surface and Coatings Technology 206/7 (2011) 1837.
[59] S.R. Choi, I.W. Park, S.H. Kim, K.H. Kim, Effects of bias voltage and temperature on mechanical properties of Ti-Si-N coatings deposited by a hybrid system of arc ion plating and sputtering techniques, Thin Solid Films 447 (2004) 371.
[60] J.L. He, C.K. Chen, M.H. Hon, Wear of Ti-Si-N coated ceramic cutting inserts, Wear 181-183/Part 1 (1995) 189.
[61] X. Sun, J.S. Reid, E. Kolawa, M.-A. Nicolet, R.P. Ruiz, Reactively sputtered Ti-Si-N films. II. Diffusion barriers for Al and Cu metallizations on Si, Journal of Applied Physics 81/2 (1997) 664.
[62] S. Balasubramanian, A. Ramadoss, A. Kobayashi, J. Muthirulandi, Nanocomposite Ti–Si–N Coatings Deposited by Reactive dc Magnetron Sputtering for Biomedical Applications, Journal of the American Ceramic Society (2011) 1.
[63] L.L.Chen. Y.H. Wu, Y.S. Lin, C.H. Chang, J.H. Huang, G.P. Yu, Nonvolatile memory with TiN nanocrystals three-dimensionally embedded in Si3N4 formed by spinodal phase segregation, Electron Device Letters 30/6 (2009) 617.
[64] P. Scherrer, Gött. Nachr. 2 (1918) 98.
[65] L.V. Azaroff, M.J. Buerger, The Powder Method in X-Ray Crystallography, McGraw-Hill, New York, 1958.
[66] W.C. Oliver, G.M. Pharr, Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of materials research 7/6 (1992) 1564.
[67] C.H. Ma, J.H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418/2 (2002) 73.
[68] E. Török, A.J. Perry, L. Chollet, W.D. Sproul, Young's modulus of TiN, TiC, ZrN and HfN, Thin Solid Films 153/1-3 (1987) 37.
[69] A.C. Fischer-Cripps, P. Karvánková, S. Veprek, On the measurement of hardness of super-hard coatings, Surface and Coatings Technology 200/18-19 (2006) 5645.
[70] ASTM, Metal Handbook, Vol. 13, 9th ed., ASM International, Materials Park, 1988, pp.
212.
[71] ASTM, Section 3 (1996) B117, pp. 4 and G85 pp. 350.
[72] T. Young, An Essay on the Cohesion of Fluids, Philosophical Transactions of the Royal Society of London 95 (1805) 65.
[73] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, Journal of Applied Polymer Science 13/8 (1969) 1741.
[74] F. Vaz, L. Rebouta, B. Almeida, P. Goudeau, J. Pacaud, J.P. Riviere, J.B.E. Sousa, Structural analysis of Ti1-xSixNy nanocomposite films prepared by reactive magnetron sputtering, Surface and Coatings Technology 120 (1999) 166.
[75] S.H. Kim, J.K. Kim, K.H. Kim, Influence of deposition conditions on the microstructure and mechanical properties of Ti–Si–N films by DC reactive magnetron sputtering, Thin Solid Films 420–421/0 (2002) 360.
[76] M. Diserens, J. Patscheider, F. Lévy, Improving the properties of titanium nitride by incorporation of silicon, Surface and Coatings Technology 108-109 (1998) 241.
[77] J.F. Shackelford, W. Alexander, Materials science and engineering handbook, CRC press, 2001.
[78] G.L. Humphrey, The Heats of Combustion and Formation of Titanium Nitride (TiN) and Titanium Carbide (TiC), Journal of the American Chemical Society 73/5 (1951) 2261.
[79] I. Tomaszkiewicz, Thermodynamics of Silicon Nitride. Standard molar enthalpy of formation of amorphous Si3N4 at 298.15 K, Journal of Thermal Analysis and Calorimetry 65/2 (2001) 425.
[80] S.S. Zumdahl, Chemical principles, Brooks/Cole Publish Co., 2007.
[81] D.Briggs, M.P. Seah, Practical Surface Analysis by AES and XPS, (1983).
[82] J. Chastain, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, 1992.
[83] B.J. Burrow, A.E. Morgan, R.C. Ellwanger, A correlation of Auger electron spectroscopy, x-ray photoelectron spectroscopy, and Rutherford backscattering spectrometry measurements on sputter-deposited titanium nitride thin films, Journal of Vacuum Science and Technology A: Vacuum, Surfaces, and Films 4/6 (1986) 2463.
[84] N.C. Saha, H.G. Tompkins, Titanium nitride oxidation chemistry: An x-ray photoelectron spectroscopy study, Journal of Applied Physics 72/7 (1992) 3072.
[85] S. Badrinarayanan, S. Sinha, A.B. Mandale, XPS studies of nitrogen ion implanted zirconium and titanium, Journal of Electron Spectroscopy and Related Phenomena 49/3 (1989) 303.
[86] M. Diserens, J. Patscheider, F. Lévy, Mechanical properties and oxidation resistance of nanocomposite TiN-SiNx physical-vapor-deposited thin films, Surface and Coatings Technology 120-121 (1999) 158.
[87] http://srdata.nist.gov/xps/.
[88] L. Wicikowski, B. Kusz, L. Murawski, B. Susła, K. Szaniawska, AFM and XPS study of nitrided TiO2 and SiO2–TiO2 sol–gel derived films, Vacuum 54/1–4 (1999) 221.
[89] J. Pouilleau, D. Devilliers, F. Garrido, S. Durand-Vidal, E. Mahé, Structure and composition of passive titanium oxide films, Materials Science and Engineering: B 47/3 (1997) 235.
[90] J.W. John F. Watts, An Introduction to Surface Analysis by XPS and AES, John Wiley and Sons Ltd., 2003.
[91] Y.H. Cheng, T. Browne, B. Heckerman, P. Gannon, J.C. Jiang, E.I. Meletis, C. Bowman, V. Gorokhovsky, Influence of Si content on the structure and internal stress of the nanocomposite TiSiN coatings deposited by large area filtered arc deposition, Journal of Physics D: Applied Physics 42/12 (2009) 125415.
[92] S. Ma, J. Prochazka, P. Karvankova, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Veprek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surface and Coatings Technology 194/1 (2005) 143.
[93] N. Jiang, Y.G. Shen, Y.W. Mai, T. Chan, S.C. Tung, Nanocomposite Ti-Si-N films deposited by reactive unbalanced magnetron sputtering at room temperature, Materials Science and Engineering B 106/2 (2004) 163.
[94] B.H. Park, Y.-I. Kim, K.H. Kim, Effect of silicon addition on microstructure and mechanical property of titanium nitride film prepared by plasma-assisted chemical vapor deposition, Thin Solid Films 348/1-2 (1999) 210.
[95] L. Hultman, M. Shinn, P. Mirkarimi, S. Barnett, Characterization of misfit dislocations in epitaxial (001)-oriented TiN, NbN, VN, and (Ti, Nb) N film heterostructures by transmission electron microscopy, Journal of crystal growth 135/1-2 (1994) 309.
[96] W.-L. Pan, G.-P. Yu, J.-H. Huang, Mechanical properties of ion-plated TiN films on AISI D2 steel, Surface and Coatings Technology 110/1–2 (1998) 111.
[97] W.-J. Chou, G.-P. Yu, J.-H. Huang, Corrosion behavior of TiN-coated 304 stainless steel, Corrosion Science 43/11 (2001) 2023.
[98] S.J. Bull, P.R. Chalker, C.F. Ayres, D.S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, Materials Science and Engineering: A 139/0 (1991) 71.