研究生: |
黃凱欣 Huang, Kai-Hsin |
---|---|
論文名稱: |
二維層金屬磷酸鹽與有機柱形成的有機無機複合骨架之研究 Syntheses, Structures and Properties of Organic-Pillared Metal Phosphates |
指導教授: |
王素蘭
Wang, Sue-Lein |
口試委員: |
林嘉和
Lin, Chia-Her 黃暄益 Huang, Hsuan-Yi |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 178 |
中文關鍵詞: | 金屬磷酸鹽 、複合骨架 、異金屬嵌入 、溶劑稀缺 |
外文關鍵詞: | metal phosphates, hybrid frameworks, heterometal insertion, solvent-scarce |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文的研究目標是二維無機金屬磷酸鹽晶格與有機配位子結合的有機無機複合骨架,內容包含兩個系統:第一個系統是片狀磷酸鋅層與4,4’-bipyridine (bpy) 連結的中性三維支柱層結構 (pillar-layer structure, PLS),由合成參數的變化,觀察到兩種類比的PLS,並藉由異金屬納入磷酸鋅層,加強骨架穩定性與孔洞性,以進一步探討材料的應用性。第二個系統是研究磷酸鋅與有機酸在溶劑稀缺(solvent-scarce)情況下的反應,發現一個新穎的有機無機複合磷酸鹽。本研究中所合成的化合物皆藉由單晶X光繞射儀鑑定結構以及由粉末X光繞射儀確定產物純度。
文獻上由磷酸鹽與bpy構成的PLS真實孔隙率應用的報導相當稀少,以[Zn2(bpy)(HPO4)2]·4H2O (Zn-bpy-w)為例,其結構在加熱移除結晶水後即瓦解,而無法進行氣體吸附的量測。先前實驗室以一鍋法合成具有良好二氧化碳吸附能力(57.3 cm3/g)的[(VOH2O)Zn2(bpy)(PO4)2]·4H2O (VZn-bpy-w),兩者對比的結構差異僅在於4.82-ZnPO4無機層八員環中的VO2+。因此第一個系統探討由Zn-bpy-w轉變為VZn-bpy-w的可能性。首先,以水熱法合成含有Zn-bpy-w的母液後加入硫酸釩,二次加熱成功地合成出VZn-bpy-w,證實兩步驟合成法能夠使Zn-bpy-w轉變為VZn-bpy-w。後者在真空下加熱得到無水相[(VO)Zn2(bpy)(PO4)2] (VZn-bpy),單晶數據證實結晶水與配位水移除後結構仍穩定且具有釩金屬開放配位(open metal site),可作為VZn-bpy良好的二氧化碳吸附能力的佐證。應用於二氧化碳與環氧丙烷的環加成催化反應,其催化效率於80 ℃ / 1.36 MPa CO2實驗條件下,所表現的催化效果TOF值為 47.5 h-1。
第二個系統探討溶劑稀缺(solvent-scarce)對有機無機複合磷酸鹽合成的影響。移除傳統水熱反應所需添加的溶劑,僅用固體起始試劑加上磷酸溶液的反應條件下開發出新穎二維結構(H2tmdp)2[Zn4(HPO4)5(H2btec)]·xH2O (x ≅ 1.3) (H1;tmdp = 4,4’-trimethylenedipyridine;H4btec = 1,2,4,5-benzenetetracarboxylic acid),H1具有文獻中罕見的(43)1(42.62)3(63)1(4.62)3(63)1鋅磷酸鹽二維層。單配位(monodentate)於鋅金屬的H2btec2-帶有兩個COOH,其中之一與相鄰的H2btec上未配位的COO-之間有分子內氫鍵,另一個COOH則與相鄰層上的HPO4具有氫鍵作用力,形成擬三維結構(pseudo-3D network)。於H1純相條件中加入 0.5 毫升的微量溶劑後會合成出二維鋅磷酸鹽 (H2tmdp)[Zn(HPO4)(btec)0.5] (NTHU-10 tmdp)。有別於H1中H2btec2-具有未配位COO-及純無機成分構成的二維層,NTHU-10 tmdp結構中的btec4-四個COO-均與鋅配位並連結由[Zn2(HPO4)2]組成之四員環團簇,形成有機無機複合二維層,由此可知H4btec的解離程度及其與金屬的配位數會受到反應環境中水量的影響,進而導引出不同的結構。
This thesis is focusing on organic-inorganic hybrid frameworks which are composed of metal phosphate layers ligated by organic ligands. It is classified into two themes: the first theme is discussing on pillar-layer structure (PLS) built from zicophosphate sheet and 4,4’-bipyridine (bpy) linkers. By comparing the synthesis parameters of two analog PLSs, the zincophosphate sheet was incorporated with a heterometal to enhance the structural stability and porosity for further applications. The second theme is to discuss the synthesis of zicophosphate and organic acid under solvent-scarce condition. All crystal structures were determined by single-crystal X-ray diffraction (SXRD) method and the purity was examined by powder Xray diffraction analysis.
According to the literature, most of PLSs constructed by metallophosphate sheets and bpy ligands did not show genuine porosity. Taking [Zn2(bpy)(HPO4)2]·4H2O (Zn-bpy-w) as an example, its framework collapsed once dehydrated, so that the gas adsorption capability could not be examined. However, our laboratory has developed a structural analog, with an additional VO2+ in the 8-membered ring of 4.82-ZnPO4, [(VOH2O)Zn2(bpy)(PO4)2]·4H2O (VZn-bpy-w), synthesized via one-pot reaction and had good carbon dioxide capture ability. Hence, the first theme is to explore the possibility of the transformation from Zn-bpy-w into VZn-bpy-w. First, the mother solution containing Zn-bpy-w was prepared, in which vanadium sulfate was added. After reheating, VZn-bpy-w was successfully obtained. It confirmed that Zn-bpy-w could be converted into VZn-bpy-w through two-step method. The dehydrated phase, [(VO)Zn2(bpy)(PO4)2] (VZn-bpy), could be obtained by heating VZn-bpy-w under vacuum. Single-crystal data showed that the structure sustained after the removal of lattice water and coordinated water and had vanadium open metal sites. This could be regarded as the evidence of the outperforming CO2 capture ability of VZn-bpy. The catalytic property of VZn-bpy was investigated as a catalyst in the cycloaddition of carbon dioxide and epoxide. It showed a conversion efficiency of 47.5 h-1 TOF under 80 ℃ / 1.36 MPa CO2.
The second theme is to explore the effect of solvent-scarce conditions on the synthesis of organic-inorganic hybrid framework. A novel two-dimenional structure (H2tmdp)2[Zn4(HPO4)5(H2btec)]·xH2O (x ≅ 1.3) (H1;tmdp = 4,4’-trimethylenedipyridine;H4btec = 1,2,4,5-benzenetetracarboxylic acid) was synthesized. Without common solvents required in conventional hydrothermal reactions, H1 was crystallized from the mixture of solid starting reagents and phosphoric acid. The distinct (43)1(42.62)3(63)1(4.62)3(63)1 two-dimensional zincophosphate sheet found in H1 is unprecedented in literature. Two COOH are observed on the monodentate H2btec2- ligand: one of the COOH has intramolecular hydrogen bonding with the COO- of the neighbor H2btec2- ligand and the other COOH has intermolecular hydrogen bonds with HPO4 on the adjacent sheet to form a pseudo-3D network. When the synthetic condition was modified with additional 0.3 mL trace water, another two-dimensional zincophosphate (H2tmdp)[Zn(HPO4)(btec)0.5] (NTHU-10 tmdp) was obtained. Comparing with H1 which had uncoordinated COO- on H2btec2- and purely inorganic sheet, NTHU-10 tmdp possesses organic-inorganic sheet consisting of four COO- of btec4- coordinated to zinc and link 4-membered ring clusters composed of [Zn2(HPO4)2]. This indicated that the degree of dissociation of H4btec and its coordination number with metal are affected by the amount of water, leading to different structures.
[1] (a) Noori, Y.; Akhbari, K. RSC Adv. 2017, 7 (4), 1782; (b) Jia, W.; Murad, S. J. Chem. Phys. 2005, 122 (23), 234708; (c) Liang, L.; Liu, C.; Jiang, F.; Chen, Q.; Zhang, L.; Xue, H.; Jiang, H. L.; Qian, J.; Yuan, D.; Hong, M. Nat. Commun. 2017, 8 (1), 1233; (d) Zhao, L.; Shi, S.; Liu, M.; Zhu, G.; Wang, M.; Du, W.; Gao, J.; Xu, J. Green Chem. 2018, 20 (6), 1270.
[2] Cronstedt, A. F. Akad. Handl. Stockholm 1756, 18, 120.
[3] Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104 (4), 1146.
[4] Wang, M. S.; Guo, G. C.; Chen, W. T.; Xu, G.; Zhou, W. W.; Wu, K. J.; Huang, J. S. Angew. Chem. Int. Ed. Engl. 2007, 46 (21), 3909.
[5] Fan, N.-Y.; Wang, S.-L. Inorg. Chem. 1996, 35, 4708.
[6] (a) Davis, M. E.; Saldarriaga, C.; Montes, C.; Garces, J.; Crowdert, C. Nature 1988, 331 (6158), 698; (b) Estermann, M.; McCusker, L. B.; Baerlocher, C.; Merrouche, A.; Kessler, H. Nature 1991, 352 (6333), 320.
[7] Johnstone, J. A.; Harrison, W. T. A. Inorg. Chem. 2004, 43 (15), 4567.
[8] Zou, X.; Conradsson, T.; Klingstedt, M.; Dadachov, M. S.; O'Keeffe, M. Nature 2005, 437 (7059), 716.
[9] Hagrman, D.; Hammond, R. P.; Haushalter, R.; Zubieta, J. Chem. Mater. 1998, 10 (8), 2091.
[10] Li, H.; Eddaoudi, M.; O'Keeffe, M.; Yaghi, O. M. Nature 1999, 402 (6759), 276.
[11] (a) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. J. Am. Chem. Soc. 2008, 130 (42), 13850; (b) Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43 (1), 58.
[12] Maspoch, D.; Ruiz-Molina, D.; Veciana, J. Chem. Soc. Rev. 2007, 36 (5), 770.
[13] Lin, H.-Y.; Chin, C.-Y.; Huang, H.-L.; Huang, W.-Y.; Sie, M.-J.; Huang, L.-H.; Lee, Y.-H.; Lin, C.-H.; Lii, K.-H.; Bu, X.et al. Science 2013, 339 (6121), 811.
[14] Huang, S.-H.; Wang, S.-L. Angew. Chem. Int. Ed. 2011, 50 (23), 5319.
[15] Sie, M.-J.; Lin, C.-H.; Wang, S.-L. J. Am. Chem. Soc. 2016, 138 (21), 6719.
[16] Chang, Y.-T.; Lo, S.-H.; Lin, C.-H.; Hung, L.-I.; Wang, S.-L. Chem. - Eur. J. 2018, 24 (48), 12474.
[17] O’Hare, D. In Encyclopedia of Materials: Science and Technology; Buschow, K. H. J.;Cahn, R. W.;Flemings, M. C.;Ilschner, B.;Kramer, E. J.;Mahajan, S.;Veyssière, P., Eds.; Elsevier: Oxford, 2001,
[18] 王素蘭(民94)。尖端科技單晶X光繞射儀的CCD偵測系統。科儀新知,26(4),48。
[19] APEX II software package; Bruker AXS, M., WI, 2008.
[20] G. M. Sheldrick, S. p., Release Version 5.1; Bruker AXS, Madison, WI, 1998.
[21] Brown, I. D.; Altermatt, D. Acta Crystallogr. B 1985, 41 (4), 244.
[22] Spek, A. Acta Crystallogr. C 2015, 71 (1), 9.
[1] Liao, Y.-C.; Liao, F.-L.; Chang, W.-K.; Wang, S.-L. J. Am. Chem. Soc. 2004, 126 (5), 1320.
[2] Ramaswamy, P.; Hegde, N. N.; Prabhu, R.; Vidya, V. M.; Datta, A.; Natarajan, S. Inorg. Chem. 2009, 48 (24), 11697.
[3] Chang, Y.-T.; Lo, S.-H.; Lin, C.-H.; Hung, L.-I.; Wang, S.-L. Chem. - Eur. J. 2018, 24 (48), 12474.
[4] (a) Lin, Z.-E.; Zhang, J.; Zheng, S.-T.; Yang, G.-Y. Z. Anorg. Allg. Chem. 2005, 631 (1), 155; (b) Wang, L.; Yang, M.; Li, G.; Shi, Z.; Feng, S. J. Solid State Chem. 2006, 179 (1), 156.
[5] Santamarı́a-González, J.; Martı́nez-Lara, M.; Bañares, M. A.; Martı́nez-Huerta, M. V.; Rodrı́guez-Castellón, E.; Fierro, J. L. G.; Jiménez-López, A. J. Catal. 1999, 181 (2), 280.
[6] Baena-Moreno, F. M.; Rodríguez-Galán, M.; Vega, F.; Alonso-Fariñas, B.; Vilches Arenas, L. F.; Navarrete, B. Energ. Source Part A. 2019, 41 (12), 1403.
[7] Hung, L.-I.; Chen, P.-L.; Yang, J.-H.; Peng, C.-H.; Wang, S.-L. Chem. - Eur. J. 2017, 23 (55), 13583.
[8] 張育慈(2016)。金屬(亞)磷酸鹽有機-無機複合奈米孔骨架之合成、鑑定與應用研究。國立清華大學化學系所博士論文,新竹市。
[9] Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. J. Chem. Soc., Dalton Trans. 1984, (7), 1349.
[10] Hung, L.-I.; Wang, S.-L.; Kao, H.-M.; Lii, K.-H. Inorg. Chem. 2002, 41 (15), 3929.
[11] Lii, K. H.; Tsai, H. J. J. Solid State Chem. 1991, 90 (2), 291.
[12] (a) Calvo, C. J. Phys. Chem. Solids 1963, 24 (1), 141; (b) Neeraj, S.; Natarajan, S.; Rao, C. N. R. J. Chem. Soc., Dalton Trans. 2001, (3), 289.
[13] Mondloch, J. E.; Karagiaridi, O.; Farha, O. K.; Hupp, J. T. CrystEngComm 2013, 15 (45), 9258.
[14] Lu, Z.; Godfrey, H. G. W.; da Silva, I.; Cheng, Y.; Savage, M.; Tuna, F.; McInnes, E. J. L.; Teat, S. J.; Gagnon, K. J.; Frogley, M. D.et al. Nat. Commun. 2017, 8, 14212.
[15] Ugale, B.; Dhankhar, S. S.; Nagaraja, C. M. Inorg. Chem. 2016, 55 (19), 9757.
[16] (a) Hou, S.-L.; Dong, J.; Jiao, Z.-H.; Jiang, X.-L.; Yang, X.-P.; Zhao, B. Inorg. Chem. Front. 2018, 5 (7), 1694; (b) Wang, Q.; Fan, H.; Wu, S.; Zhang, Z.; Zhang, P.; Han, B. Green Chem. 2012, 14 (4).
[17] Kathalikkattil, A. C.; Roshan, R.; Tharun, J.; Babu, R.; Jeong, G. S.; Kim, D. W.; Cho, S. J.; Park, D. W. Chem. Commun. 2016, 52 (2), 280.
[18] Beyzavi, M. H.; Klet, R. C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N. A.; Cramer, C. J.; Stoddart, J. F.; Hupp, J. T.; Farha, O. K. J. Am. Chem. Soc. 2014, 136 (45), 15861.
[19] Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.; Cordova, K. E.; Yaghi, O. M. Nat. Rev. Mat. 2017, 2, 17045.
[20] Beyzavi, M. H.; Stephenson, C. J.; Liu, Y.; Karagiaridi, O.; Hupp, J. T.; Farha, O. K. Front. Energy Res. 2015, 2 (63).
[1] Trost, B. M. Angew. Chem. Int. Ed. 1995, 34 (3), 259.
[2] (a) Breck, D. W.; Wiley, J.; Sons. J. Chromatogr. Sci. 1975, 13 (4), 18A; (b) Weitkamp, J. Solid State Ionics 2000, 131 (1), 175.
[3] (a) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; Keeffe, M.; Yaghi, O. M. Science 2002, 295 (5554), 469; (b) Kitagawa, S.; Kitaura, R.; Noro, S.-i. Angew. Chem. Int. Ed. 2004, 43 (18), 2334; (c) Murugavel, R.; Choudhury, A.; Walawalkar, M. G.; Pothiraja, R.; Rao, C. N. R. Chem. Rev. 2008, 108 (9), 3549.
[4] Ren, L.; Wu, Q.; Yang, C.; Zhu, L.; Li, C.; Zhang, P.; Zhang, H.; Meng, X.; Xiao, F.-S. J. Am. Chem. Soc. 2012, 134 (37), 15173.
[5] Kole, G. K.; Cairns, A. J.; Eddaoudi, M.; Vittal, J. J. New J. Chem. 2010, 34 (11), 2392.
[6] Lin, Z.; Nayek, H. P.; Dehnen, S. Inorg. Chem. 2009, 48 (8), 3517.
[7] (a) Lin, Z.; Dehnen, S. J. Solid State Chem. 2009, 182 (11), 3143; (b) Lin, Z.; Nayek, H. P.; Dehnen, S. Microporous Mesoporous Mater. 2009, 126 (1), 95; (c) Luo, X.; Gong, M.; Chen, Y.; Lin, Z. Microporous Mesoporous Mater. 2010, 131 (1), 418; (d) Wang, S.; Luo, D.; Luo, X.; Chen, Y.; Lin, Z. Solid State Sci. 2011, 13 (5), 904; (e) Duan, C.; Luo, D.; Wang, Q.; Deng, Y.; Lin, Z. Inorg. Chem. Commun. 2013, 31, 79; (f) Liu, L.; Zhang, W.; Shi, Z.; Chen, Y.; Lin, Z. Solid State Sci. 2014, 38, 13; (g) Zhang, W.; Kang, M.; Yang, M.; Luo, D.; Lin, Z. CrystEngComm 2015, 17 (48), 9296.
[8] (a) Duan, C.; Luo, D.; Shang, R.; Lin, Z. CrystEngComm 2013, 15 (28), 5602; (b) Liu, L.; Luo, D.; Li, D.; Lin, Z. Dalton Trans. 2014, 43 (21), 7695; (c) Luan, L.; Li, J.; Chen, C.; Lin, Z.; Huang, H. Inorg. Chem. 2015, 54 (19), 9387; (d) Luan, L.; Yang, M.; Bian, Y.; Lin, Z.; Huang, H. Dalton Trans. 2015, 44 (30), 13485; (e) Wang, W.; Luan, L.; Yang, M.; Wang, K.; Lin, Z. Inorg. Chem. Commun. 2017, 75, 46; (f) Li, J.; Li, T.; Zeng, H.; Zou, G.; Lin, Z. Inorg. Chem. Commun. 2018, 95, 8; (g) Luan, L.; Zou, G.; Lin, Z.; Cai, H.; Huang, H. Inorg. Chem. Commun. 2018, 96, 65; (h) Luan, L.; Zhang, Y.; Zeng, H.; Zou, G.; Dai, Y.; Zhou, X.; Lin, Z. Dalton Trans. 2019, 48 (35), 13130.
[9] Liao, Y.-C.; Liao, F.-L.; Chang, W.-K.; Wang, S.-L. J. Am. Chem. Soc. 2004, 126 (5), 1320.
[10] (a) Huang, S.-H.; Lin, C.-H.; Wu, W.-C.; Wang, S.-L. Angew. Chem. Int. Ed. 2009, 48 (33), 6124; (b) Huang, S.-H.; Wang, S.-L. Angew. Chem. Int. Ed. 2011, 50 (23), 5319.
[11] (a) 黃書豪(2012)。功能性材料金屬磷酸鹽/亞磷酸鹽之合成、結構與性質。國立清華大學化學系博士論文,新竹市。;(b) 張育銓(2014)。以雙吡啶有機胺合成具功能性有機染料晶體與有機配位鋅磷酸鹽之結構與性質研究。國立清華大學化學系博士論文,新竹市。.
[12] Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38 (5), 1330.
[13] Harrison, W. T. A.; Phillips, M. L. F.; Clegg, W.; Teat, S. J. J. Solid State Chem. 1999, 148 (2), 433.
[14] 黃玉廷(2011)。有機無機複合金屬磷酸鹽材料之綠色合成與功能性研究。國立清華大學化學系博士論文,新竹市。.
[15] Chang, Y.-C.; Wang, S.-L. J. Am. Chem. Soc. 2012, 134 (24), 9848.
[16] Whitaker, A. Acta Crystallogr. B 1975, 31 (8), 2026.