簡易檢索 / 詳目顯示

研究生: 林佩蓁
Lin, Pei-Chen
論文名稱: 以受激拉曼散射實現光學分子指紋檢測術
Optical Molecular Dactyloscopy by Stimulated Raman Scattering
指導教授: 楊尚達
Yang, Shang-Da
口試委員: 林彥穎
Lin, Yen-Yin
鍾昭宇
Chung, Chao-Yu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 41
中文關鍵詞: 非線性光學拉曼受激拉曼散射分子指紋分子檢測
外文關鍵詞: NonlinearOptics, Raman, SRS, Dactyloscopy, fingerprint
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技日新月異,人們對各種事物都想要有更深入的研究,然而有時候的限制是來自技術的難關,受激拉曼散射顯微術是近幾年來生醫領域發展重要的新顯微術。受激拉曼散射顯微術有掃描生物活體的優勢,利用光學與分子的非線性效應,不需要在生物體內植入有害或有時效性的分子,將兩道光的頻率差調整至與分子振動頻率共振來偵測分子的存在。在此篇論文中,我們探討拉曼散射的基本原理、受激拉曼散射的條件、將受激拉曼散射概念應用到分子檢測術的各個步驟。其中關鍵包含脈衝重疊、脈衝強度調變、偵測系統的細節。最後一部分討論實驗上測試橄欖油、甲醇與丙炔醇的實驗結果和比較。目前的架構的解析度為數個微米,濃度偵測極限為0.1%。


    Stimulated Raman scattering (SRS) microscopy is a useful technique for detecting molecules in live cells. It is a label-free imaging technique that could function well without changing the biological working condition. Raman scattering is a nonlinear optical process that happens when the input light scatters with certain molecules and photons are excited to higher vibrational or rotational energy levels. In this work, we demonstrate the construction of molecular detection technique applying stimulated Raman scattering. The resolution of the system is several microns. The sensitivity of detection is around 0.1% volume percentage concentration.

    Abstract (2) Chapter 1 Introduction (8) Chapter 2 Theory (10) 2.1 Raman Scattering (10) 2.2 Spontaneous versus Stimulated Raman Scattering (11) 2.3 Coherent Raman Scattering Microscopy (13) 2.4 Comparison with Other Microscopic Techniques (14) Chapter 3 Experimental Setup (15) 3.1 Delay Stage (17) 3.2 Acousto-Optic Modulator (21) 3.3 Lock-in Amplifier (23) 3.4 Objective Lens (26) 3.5 Photodetector (29) Chapter 4 Experimental Results (30) 4.1 Dependence on Driving Intensity (32) 4.2 Dependence on Driving Concentration (36) Chapter 5 Summary and Future work (38) 5.1 Summary (38) 5.2 Future Work (39) References (40)

    1. Hobbie, J. El, R. Jasper Daley, and STTI977 Jasper. "Use of nuclepore filters for counting bacteria by fluorescence microscopy." Applied and environmental microbiology 33.5 (1977): 1225-1228.
    2. Kam, Z., et al. "Drosophila gastrulation: analysis of cell shape changes in living embryos by three-dimensional fluorescence microscopy." Development 112.2 (1991): 365-370.
    3. Svoboda, Karel, and Ryohei Yasuda. "Principles of two-photon excitation microscopy and its applications to neuroscience." Neuron 50.6 (2006): 823-839.
    4. Freudiger, Christian W., et al. "Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy." Science 322.5909 (2008): 1857-1861.
    5. Slipchenko, Mikhail N., et al. "Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy." Analyst135.10 (2010): 2613-2619.
    6. Cheng, Ji-Xin, and X. Sunney Xie. "Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine." Science 350.6264 (2015): aaa8870.
    7. Otsuka, Yoichi, et al. "On-line visualization of multicolor chemical images with stimulated Raman scattering spectral microscopy." Analyst 140.9 (2015): 2984-2987.
    8. Hong, Senlian, et al. "Live‐Cell Stimulated Raman Scattering Imaging of Alkyne‐Tagged Biomolecules." Angewandte Chemie International Edition 53.23 (2014): 5827-5831.
    9. Wei, Lu, et al. "Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy." Proceedings of the National Academy of Sciences 110.28 (2013): 11226-11231.
    10. Ozeki, Y., and K. Itoh. "Stimulated Raman scattering microscopy for live-cell imaging with high contrast and high sensitivity." Laser physics 20.5 (2010): 1114-1118.
    11. Ozeki, Yasuyuki, et al. "Stimulated Raman hyperspectral imaging based on spectral filtering of broadband fiber laser pulses." Optics letters 37.3 (2012): 431-433.
    12. Zhang, Delong, et al. "Spectrally modulated stimulated Raman scattering imaging with an angle-to-wavelength pulse shaper." Optics express 21.11 (2013): 13864-13874.
    13. Slipchenko, Mikhail N., et al. "Heterodyne detected nonlinear optical imaging in a lock‐in free manner." Journal of biophotonics5.10 (2012): 801-807.
    14. Boyd, Robert W. Nonlinear optics. Elsevier, 2003. Chapter 10
    15. Ozeki, Yasuyuki, et al. "Analysis and experimental assessment of the sensitivity of stimulated Raman scattering microscopy." Optics express 17.5 (2009): 3651-3658.
    16. Cheng, Ji-Xin, and Xiaoliang Sunney Xie, eds. Coherent Raman scattering microscopy. CRC press, 2016.
    17. Sabatté, Gwénola, et al. "Comparison of surface-enhanced resonance Raman scattering and fluorescence for detection of a labeled antibody." Analytical chemistry 80.7 (2008): 2351-2356.
    18. https://www.thinksrs.com/products/sr844.html
    19. https://www.olympus-lifescience.com/en/objectives/uplsapo/

    QR CODE