研究生: |
曾迪農 Di-Nung Tseng |
---|---|
論文名稱: |
微流道中壓損之量測以及內部結構對降壓之研究 Measurement of pressure drop in the micro-channel and research of the structure inside micro-channel to pressure drop |
指導教授: |
饒達仁
Da-Jeng Yao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 116 |
中文關鍵詞: | 流速 、壓降 、微流道 、微型柱 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文發展出一可量測微流體壓降之系統,並以微型化高效能液相層析儀之層析管道為應用概念。將系統微型化為一實驗室晶片,藉由研究微流體在流道的行為如流速與壓降,希望對於未來在生醫晶片上提升蛋白質或胺基酸分離效能、避免高壓驅動等方面的研究有所助益。設計上,仿造傳統層析管柱中的“靜相“概念,在微流道中加入微型柱,以觀察微型柱對於微流體的流速及壓降影響。
微流道晶片製作以矽基材微影製程為製作流道的主要技術,其中包含黃光微影、濕式蝕刻、陽極接合製程以及最後的晶片切割。流速研究上,以晶片在毛細力驅動下觀測流場,並得知微型柱的設計可以有效降低微流體在流道中的流速進以可提升未來生醫檢體的層析效能。壓降研究上,利用真空幫浦抽氣的方式來驅動流體,研究真空壓驅動對於微流道壓降所造成的影響;並設計在主流道側壁分佈分支流道,以分支流道作為壓降感測的概念,藉由驅動流體時,分支流道內所形成的氣泡大小變化,及本文所推導的公式來推算壓降變化及其趨勢,並藉著Washburn’s Law的壓降公式進行驗證。接著應用此壓降推算概念於微型柱流道中,得到不同尺寸微型柱其壓降與驅動壓的關係。因此除了驗證分支流道設計的可行性外,亦提供未來在設計層析管道時,其尺寸與壓降的架構依據。
1. G.M. Mala and L. Dongqing, "Flow characteristics of water in microtubes", International Journal of Heat and Fluid Flow, 20(2): pp. 142-148, 1998.
2. Q. Weilin, G.M. Mala, and L. Dongqing, "Pressure-driven water fows in trapezoidal silicon microchannels", International Journal of Heat and Mass Transfer, 43(3): pp. 353-364, 1999.
3. H. Park, et al., "Fabrication of a microchannel integrated with inner sensors and the analysis of its laminar flow characteristics", Sensors and Actuators A: Physical, 103(3): pp. 317-329, 2003.
4. M.J. Kohl, et al., "A microfluidic experimental platform with internal pressure measurements", Sensors and Actuators A: Physical, 118(2): pp. 212-221, 2004.
5. T.N. Tun, et al., "Contact pressure measurement using silicon-based AlxGa1−xAs semiconductor pressure sensors", Sensors and Actuators A: Physical, 118(2): pp. 190-201, 2004.
6. A.Manz, et al., "Design of an Open-Tubular Column Liquid Chromatograph Using Silicon Chip Technology", Sensors and Actuators B:Chemical, 1(1): pp. 249-255, 1990.
7. B.He, N.Tait, and F.Regnier, "Fabrication of Nanocolumns for Liquid Chromatography", Analytical Chemistry, 70(18): pp. 3790-3797, 1998.
8. 潘柏霖, "微型模穴填充過程之輸送現象研究 ", 國立交通大學機械工程學系碩士論文,pp. 6-7, 2004.
9. Y.Lee, et al., "Flow Characteristics of Hydrophilic/Hydrophobic Capillaries Considering Surface Tension", in 2nd Annual International IEEE-EMB Special Topic Conference, pp. 560-564, 2002.
10. D.Y. Kwow and A.W. Neumann, "Contact angle measurement and contact angle interpretation", Advances in Colloid and Interface Science, 81(1): pp. 167-249, 1999.
11. JensJ.Ducre'e and Roland.Zengerle, "Microfluidics ": Springer, 156, 2006.
12. Jean.Berthier and Pascal.Silberzan, "Microfluidics for Biotechnology", Microelectromechanical systems: Baker & Taylor Books, 21-29, 2006.
13. Shah, R.K., and A.L.London, "Laminar Flow Forced Convection in Ducts": Academic Pr, 197, 1978.
14. Washburn and E.W., "The Dynamics of Capillary Flows", Physical Review, 17(3): pp. 273-283, 1921.
15. S. Bendib and O. Francais, "Analytical Study of Microchannel and Passive Microvalve:Application to Micropump Simulator", in Design,Characterisation,and Packaging for MEMS and Microelectronics 2001, Australia, pp. 283-291, 2001.
16. H. Wohltjen and J.F. Giuliani, "Method for bonding insulator to insulator". US Patent specification 4452624. 1984.
17. G. Vazquez, E. Alvarez, and J.M. Navaza, "Surface Tension of Alcohol + Water from 20 to 50°C", Journal of Chemical and Engineering Data, 40(3): pp. 611-614, 1995.
18. O. Cleveland, "Handbook of Chemistry and Physics", 55th Edition, CRC Press, ed, D-122, 1974.