研究生: |
陳禹佑 Chen, Yu-Yu |
---|---|
論文名稱: |
全年無休組織排班問題研究-以半導體晶圓廠設備人員排班為例 Research on The On Duty Problem of All Year Round Organizing - Take The Scheduling of Equipment Personnel in a Semiconductor Fab as an Example |
指導教授: |
張國浩
Chang, Kuo-Hao |
口試委員: |
林義貴
Lin, Yi-Kuei 張家齊 Chang, Chia-Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系碩士在職專班 Industrial Engineering and Engineering Management |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 52 |
中文關鍵詞: | 人員排班 、晶圓廠設備人員 、公平性排班 、全年無休 、整數規劃法 |
外文關鍵詞: | personnel scheduling, fab equipment personnel, fair scheduling, all year round, integer planning method |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
即便現今科技發展已非常進步,但仍有許多工作是無法藉由流程簡化的設計或是設備自動化的方式來取代的。這些行業可能因工作內容的中斷,會造成人員傷亡或是公司重大損失,所以為維持這類組織或公司能24小時全年無休的運作,人員排班成為這些行業需面臨的重要課題。”半導體晶圓廠設備人員排班”便是在台灣科技製造業興起後,成為每家科技公司在提升產品良率以及增加出貨量上所必須面對的問題。它需遵守勞動基準法(勞基法)所規定的眾多限制,例如:每日工作時數限制、每月工作時數限制以及不得違反連續工作天數限制……等眾多法規限制。此外,亦需滿足該公司或是組織內部訂立的工作限制,例如:每班需要某層級以上的資深人員做為領導、各種輪值班別(常日值班、小夜值班、大夜值班、假日日班、假日夜班……等班別)以及各種休假被分配到的天數之公平性,故此問題被視為高複雜度的整數規劃與排列組合的搜尋問題。
為滿足各行各業的人員排班問題之公平性,本研究將此類問題以整數規劃法來進行求解,並以台灣某晶圓代工製造大廠的其中一個廠區的某工程部門所屬設備課為個案來進行研究。本研究討論的排班期為兩季(2020年的Q2、Q3),大於一般以週或是月為排班期之研究方式,並考慮到此個案所需使用到的多種輪值班別,目標解為滿足法規以及該單位內規,故此問題極為複雜。為有效並快速求解此多人數排班問題,有別於過去大部份對於人員排班問題多以兩階段式求解,本研究設計以一階段求解方式來取得最終排班結果,並利用現今較廣泛使用的程式語言python(3.8.5)進行撰寫並搭配求解套件gurobipy,測試環境則為Windows 10作業系統、1.8G Hz處理器速度、8G記憶體,在得到求解數據後再將電腦運算排班與原人為手動排班之結果做比較。經測試後,電腦運算在執行排班的速度上遠比人為手動來的快速且正確,而在設備人員總休假天數分配的指標數據(全距、標準差、變異係數)上的表現也比人為手動差距小,符合預期的讓設備人員總休假天數平均分配的公平性。總結:電腦運算排班在執行速度上和讓設備人員休假天數平均分配的公平性皆優於人為手動排班的方式。
Even with the advancement of technology today, there are still many jobs that can’t be replaced by simplified process design or equipment automation. These industries may cause casualties or major company losses due to the interruption of work content. Therefore, in order to maintain such organizations or companies to operate 24 hours a day, personnel scheduling has become an important issue for these industries. "Semiconductor fab equipment personnel scheduling" has become a problem that every technology company must face in improving product yield and increasing shipments after the rise of Taiwan's technology manufacturing industry. It needs to comply with many restrictions stipulated by the Labor Standards Law (Labor Standards Law), such as: daily working hours limit, weekly working hours limit, monthly working hours limit, and not to violate the continuous working days limit... etc. Legal restrictions. In addition, it is also necessary to meet the work restrictions established by the company or organization. For example, each class needs to have several senior personnel at a certain level or above as the leader of the class. Various types of shifts (normal duty, night duty) , Night shifts, holiday day shifts, holiday night shifts... etc.) and the fairness of the number of days allocated to various vacations, which makes the personnel scheduling problem more complicated, so this problem is regarded as a highly complex The search problem of integer programming and permutation and combination.
In order to meet the fairness of personnel scheduling problems in all walks of life, this research uses integer programming to solve such problems, and uses the equipment department of a certain engineering department of a large foundry manufacturing plant in Taiwan. Research for the case. The scheduling period discussed in this research is two seasons (Q2 and Q3 in 2020), which is larger than the research method that usually uses weekly or monthly schedules. Taking into account the various types of shifts used in this case, the goal is The solution is to meet the regulations and the internal regulations of the unit, so the problem is extremely complicated. In order to effectively and quickly solve this multi-person scheduling problem, unlike most of the past, the personnel scheduling problem was solved in two stages. This research design uses a one-stage solution method to obtain the final scheduling result, and uses the current comparison. The widely used programming language python (3.8.5) is used for writing and the solution package gurobipy is used. The test environment is Windows 10 operating system, 1.8G Hz processor speed, 8G memory, after obtaining the solution data, compare the results of the computer operation scheduling with the original manual scheduling. After testing, computer calculations are far faster and more accurate than manual scheduling, and the performance of the indicator data (full distance, standard deviation, coefficient of variation) allocated by the total number of vacation days of equipment personnel is also better than that of manual operation. The manual gap is small, which is in line with the expected fairness of the equitable distribution of the total number of vacation days for equipment personnel. Summary: The execution speed of computer operation scheduling and the fairness of the average distribution of vacation days for equipment personnel are better than manual scheduling.
[1] Aggarwal, S. C. (1982). A Focussed Review of Scheduling in Services. European Journal of Operational Research, 9(2), 114–121.
[2] Arthur, E. L., & Ravindran, A. (1981). A Mathematical Programming Model for Scheduling Nursing Personnel in a Hospital. AIIE Transactions, 13(1), 55–60.
[3] Beasley, J. E., & Cao, B. (1996). A Tree Search Algorithm for the Crew Scheduling Problem. Operations Research, 94(3), 517–526.
[4] Buffa, E. S., Cosgrove, M. J., & Luce, B. J. (1976). An Integrated Work Shift Scheduling System. Decision Sciences, 7(4), 620–630.
[5] Burke, E. K, Li, Jingpeng, & Qu, R. (2010). A Hybrid Model of Integer Programming and Variable Neighbourhood Search for Highly-Constrained Nurse Rostering Problems. European Journal of Operational Research, 203(2), 484–493.
[6] Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant System:Optimization by a Colony of Cooperating Agents. IEEE Transactions on Systems, 26(1), 29–41.
[7] Ernst, A. T., Jiang, H., Krishnamoorthy, M., & Sier, D. (2004). Staff Scheduling and Rostering:A Review of Applications, Methods and Models. European Journal of Operational Research, 153(1), 3–27.
[8] Faaland, B., & Schmitt, T. (1993). Cost-Based Scheduling of Workers and Equipment in a Fabrication and Assembly Shop. Operations Research, 41(2), 253–268.
[9] Glover , F., & Laguna, M. (1999). Tabu Search. Journal of the Operational Research Society, 50(1), 106–107.
[10] Holland, J. H. (1975). Adaptation in Natural and Artificial Systems:An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence(1st ed.). University of Michigan Press. ISBN:0472084607, 9780472084609
[11] Huang, S. H., & Yang, T. H. (2011). Ant Colony Optimization for Railway Driver Crew Scheduling:From Modeling to Implementation. Journal of the Chinese Institute of Industrial Engineers, 28(6), 437–449.
[12] Jaumard, B., Semet, F., & Vovor, T. (1998). A Generalized Linear Programming Model for Nurse Scheduling. European Journal of Operational Research, 107(1), 1–18.
[13] Land, A. H., & Doig, A. G. (1960). An Automatic Method of Solving Discrete Programming Problems. Econometrica, 28(3), 497–520.
[14] Stojkovic, M., Soumis, F., & Desrosiers, J. (1998). The Operational Airline Crew Scheduling Problem.Transportation Science, 32(3), 232–245.
[15] Sundaramoorthi, D., Chen, V. C. P., Rosenberger, J. M., Kim, S. B., & Buckley-behan, D. F. (2009). A Data-Integrated Simulation Model to Evaluate Nurse-Patient Assignments. Health Care Management Science, 12(252).
[16] Taylor, P., & Huxley, S. (1989). A Break from Tradition for the San Francisco Police:Patrol Officer Scheduling Using an Optimization-Based Decision Support System. Interfaces, 19(1), 4–24.
[17] Trivedi, V. (1974).Optimum Allocation of Float Nurses Using Head Nurses Perspectives(Ph.D. Thesis.). University of Michigan.
[18] Warner, D. M., & Prawda, J. (1972). A Hybrid Model of Integer Programming and Variable Neighbourhood Search for Highly-Constrained Nurse Rostering Problems. Management Science, 19(4–1), 357–463.
[19] Weil, G., Heus, K., Francois, P., & Poujade, M. (1995). Constraint Programming for Nurse Scheduling. IEEE Engineering in Medicine and Biology, 14(4), 417–422.
[20] Woeginger, G. J. (2003). Exact Algorithms for NP-Hard Problems:A Survey. Combinatorial Optimization — Eureka, You Shrink!, 185–207.
[21] 康家榮, (指導教授:黃允成), "整數規劃在護理排班與排休問題之應用", 國立屏東科技大學工業管理系碩士論文, 2009
[22] 錢漢恩, (指導教授:黃怡詔), "整數規劃法於警察人員排班最佳化之應用", 國立屏東科技大學工業管理系碩士論文, 2016
[23] 陳翊含, (指導教授:鄭仁偉,呂志豪), "便利商店員工排班問題研究-運用Python設計基因演算法程式求解",國立臺灣科技大學企業管理系碩士論文, 2019
[24] 黃盟捷, (指導教授:林詩偉), "應用基因演算法於急診護理人員重新排班問題", 長庚大學資訊管理系碩士論文, 2014
[25] 賴冠汝, (指導教授:廖宜恩), "應用基因演算法於半導體作業員排班問題最佳化之研究", 國立中興大學資訊科學與工程學系所碩士論文, 2013
[26] 王國琛, (指導教授:韓復華), "結合限制規劃與數學規劃求解大型後艙空勤組員排班問題", 國立交通大學運輸科技與管理學系, 2001
[27] 夏萬春, (指導教授:張清靠), "禁制搜尋法於車輛排班之探討", 國立高雄第一科技大學機械與自動化工程系碩士論文, 2001