研究生: |
李暐凡 Lee, Wei-Fan |
---|---|
論文名稱: |
Synthesis and Characterization of One-Dimensional Doped Silicon-Based and Indium Selenide Nanostructures 矽基材料之摻雜與硒化銦一維奈米結構之合成與性質研究 |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 75 |
中文關鍵詞: | 奈米線 、矽 、矽鍺 、硒化銦 、相變記憶體 |
外文關鍵詞: | nanowire, silicon, silicon germanium, indium selenide, phase change memory |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
One-dimensional (1D) nanostructures have been regarded as the most promising building blocks for nanoscale electronic and optoelectronic devices. Nd-doped silicon nanowires have been synthesized by a vapor transport and condensation method. The incorporation of neodymium within silicon nanowires was achieved by using NdCl3•6H2O powder as the doping source. Ferromagnetism and infrared photoluminescence at room temperature were observed for the first time. The significant variation and versatility of the properties exhibited by the Nd-doped silicon nanowires are promising for exploitation for the advanced silicon-based devices.
Silicon-germanium (Si1-xGex) nanowires have been grown by a simple vapor transport method. The growth was found to follow the vapor-liquid-solid mechanism. The composition of germanium in the Si1-xGex nanowires ranging from 0 to 0.55 ( 0<x≦0.55) could be controlled by adjusting the ratio of Ge/Si source. The iodine source in this synthesis process was found to be critical in facilitating the reactions. Ferromagnetism at room temperature was observed by implanting the Mn ions with the dose of 2x1016 /cm2 at 200 KV.
One-dimensional In2Se3 nanobelts have been synthesized via a vapor-liquid-solid process. The I-V measurement demonstrated that the reversible phase transformation between the crystalline and amorphous state with the resistance ratio of about 102-104. The 1100 nm infrared photoemission was also observed by photoluminescence measurement. Both the electrical and optical properties suggested that the In2Se3 were viable as the building block for the state-of-the-art optoelectronics and phase change memory devices.
一維奈米結構是近來最受矚目的一個研究方向,除了物質在奈米尺度下所具有的特殊物理性質外,同時也是奈米元件的最小組成單元。本研究將重心放在一維奈米線的合成及摻雜的性質研究,涵蓋的範圍可區分為三個部分。第一部分為矽奈米線中摻入釹的稀土元素。釹摻雜的矽奈米線可利用水平爐管搭配氯化釹的粉末做為摻雜來源成功的合成出來。在性質方面除了稀土元素釹本身具有的1.3微米的放光外,室溫下釹摻雜的矽奈米線所具有鐵磁的行為也是首次被觀察到。此外,電阻率及場發射性質的量測間接的提供了釹元素摻雜入矽奈米線的證據。第二部分為矽鍺奈米線的合成,在本實驗中,首次發現利用碘的粉末搭配矽及鍺的反應物可成功的在爐管中成長出矽鍺奈米線,碘在整個反應過程中扮演著一個不可或缺的關鍵角色。此外,利用不同比例的矽與鍺粉末可用以控制所成長出的矽鍺奈米線的成分比例。而在性質方面,利用離子佈植的技術可將錳離子摻雜進矽鍺奈米線中,成功的合成並觀測到在室溫下具有鐵磁行為的錳摻雜矽鍺奈米線。不論是釹摻雜的矽奈米線或是錳摻雜的矽鍺奈米線,其於室溫下所具有的鐵磁行為,都是未來應用於自旋電子元件中相當具有潛力的材料。
最後一個部分為硒化銦奈米帶的研究。硒化銦是一個在相變記憶體上常被運用的材料,利用爐管以氣-液-固 (Vapor-liquid-solid)三相的方法可成功合成出具有超晶格結構的硒化銦奈米帶,將所合成出的奈米帶以離子束聚焦的方式把鉑鍍在奈米帶的兩端做為電極,再以電性設備進行觀測,利用調控不同的電流強度可控制奈米帶的結晶行為進而達到1及0的訊號控制。此外,在光學量測的部份,由於硒化銦奈米帶具有一個較窄的能隙,且載子傳輸可在一個維度方向上,在太陽能電池的應用上也是一個適當的選擇。
References
1. Moore, G. E., "Cramming more components onto integrated circuits," Electronics 1965, 38, 6131-6134.
2. Duan, X.; Lieber, C. M., "General synthesis of compound semiconductor nanowires," Adv. Mater. 2000, 12, 298-302.
3. Dailey, J. W.; Taraci, J.; Clement, T.; Smith, D. J.; Drucker, J.; Picraux, S. T., "Vapor-liquid-solid growth of germanium nanostructures on silicon.,"J. Appl. Phys. 2004, 96, 7556-7567.
4. Peng, H. Y.; Pan, Z. W.; Xu, L.; Fan, X. H.; Wang, N.; Lee, C.-S.; Lee, S.-T., "Temperature dependence of Si nanowire morphology," Adv. Mater. 2001, 13, 317-320.
5. Zhang, J.; Zhang, L.; Peng, X.; Wang, X., "Vapor-solid growth route to single-crystalline indium nitride nanowires," J. Mater. Chem 2002, 12, 802-804.
6. Li, Y. B.; Bando, Y.; Sato, T.; Kurashima, K., "ZnO nanobelts grown on Si substrate," Appl. Phys. Lett. 2002, 81, 144-146.
7. Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E., "Solution-liquid-solid growth of crystalline III-V semiconductors: an analogy to vapor-liquid- solid growth ,"Science 1995, 270, 1791-1794.
8. Lu, X.; Fanfair, D. D.; Johnston, K. P.; Korgel, B. A., "High yield solution-liquid-solid synthesis of germanium nanowires,"
J. Am. Chem. Soc. 2005, 127, 15718-15719.
9. Ma, D. D. D.; Lee, C. S.; Au, F. C. K.; Tong, S. Y.; Lee, S. T., "Small-diameter silicon nanowire surfaces," Science 2003, 299 1874-1877.
10. Meng, X.-M.; Hu, J.-Q.; Jiang, Y.; Lee, C.-S.; Lee, S.-T., "Oxide-assisted growth and characterization of Ge/SiOx nanocables," Appl. Phys. Lett. 2003, 83, 2241-2243.
11. Wagner, R. S.; Ellis, W. C., "Vapor-liquid-solid mechanism of single crystal growth," Appl. Phys. Lett. 1964, 4, 89-90.
12. Watanabe, Y.; S.Kaneko; Kawazoe, H.; Yamane, M., "Imperfections of amorphous chalcogenides. IV. A model of electrical conduction processes in amorphous and crystalline In2Se3," Phy. Rev. B 1989, 40, 3133-3142.
13. Ohtsuka, T.; Nakanishi, K.; Okamoto, T.; Yamada, A.; Konagai, M.; Jahn, U., "Epitaxial growth of γ-In2Se3 films by molecular beam epitaxy," Jpn. J. Appl. Phys. 2001, 40, 509-512.
14. Julien, C.; Chevy, A.; Siapkas, D., "Optical properties of In2Se3 phases," Phys. Stat. Sol. A 1990, 118, 553-559.
15. Bindu, K.; Kartha, C. S.; Vijayakumar, K. P.; Abe, T.; Kashiwaba, Y., "Structural, optical and electrical properties of In2Se3 thin films formed by annealing chemically deposited Se and vacuum evaporated In stack layers," Appl. Surf. Sci. 2002, 191, 138-147.
16. Chaiken, A.; Nauka, K.; Gibson, G. A.; Lee, H.; Yang, C. C., "Structural and electronic properties of amorphous and polycrystalline In2Se3 films," J. Appl. Phys. 2003, 94, 2390-2397.
17. Lu, W.; Lieber, C. M., "Nanoelectronics from the bottom up," Nat. Mater. 2007, 6, 841-850.
18. Chen, L. J., "Silicon nanowires: the key building block for future electronic devices," J. Mater. Chem 2007, 17, 4639-4643.
19. Teo, B. K.; Sun, X. H., "Silicon-based low-dimensional nanomaterials and nanodevices," Chem. Rev. 2007, 107, 1454-1532.
20. Wang, N.; Zhang, Y. F.; Tang, Y. H.; Lee, C. S.; Lee, S. T., "SiO2-enhanced synthesis of Si nanowires by laser ablation," Appl. Phys. Lett. 1998, 73, 3902-3904.
21. Morales, A. M.; Lieber, C. M., "A laser ablation method for the synthesis of crystalline semiconductor nanowires," Science 1998, 279, 208-211.
22. Fuhrmann, B.; Leipner, H. S.; Hoche, H.-R.; Schubert, L.; Werner, P.; Goesele, U., "Ordered arrays of silicon nanowires produced by nanosphere lithography and molecular beam epitaxy," Nano Lett. 2005, 5, 2524-2527.
23. Lyer, S. S.; Xie, Y.-H., "Light emission from silicon," Science 1993, 260, 40-46.
24. Cui, Y.; Duan, X.; Hu, J.; Lieber, C. M., "Doping and electrical transport in silicon nanowires," J. Phys. Chem. B 2000, 104, 5213-5216.
25. Colli, A.; Fasoli, A.; Ronning, C.; Pisana, S.; Piscanec, S.; Ferrarl, A. C., "Ion beam doping of silicon nanowires," Nano Lett. 2008, 8, 2188-2193.
26. Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M., "Single p-type/Intrinsic/n-Type silicon nanowires as nanoscale avalanche photodetectors," Nano Lett. 2006, 6, 2929-2934.
27. Bolduc, M.; Awo-Affouda, C.; Stollenwerk, A.; Huang, M. B.; Ramos, F. G.; Agnello, G.; LaBella, V. P., "Above room temperature ferromagnetism in Mn-ion implanted Si," Phys. Rev. B 2005, 71, 033302.
28. Priolo, F.; Franzo, G.; Coffa, S.; Polman, A.; Libertino, S.; Barklie, R.; Carey, D., "The erbium-impurity interaction and its effects on the 1.54 um luminescence of Er3+ in crystalline silicon," J. Appl. Phys. 1995, 78, 3874-3882.
29. Huang, C. T.; Hsin, C. L.; Huang, K. W.; Lee, C. Y.; Yeh, P. H.; Chen, U. S.; Chen, L. J., "Er-doped silicon nanowires with 1.54 um light-emitting and enhanced electrical and field emission properties," Appl. Phys. Lett. 2007, 91, 093133.
30. Ossicini, S.; Pavesi, L.; Priolo, F., "Light emitting silicon for microphotonics," Springer: Berlin, 2003.
31. Bandaru, P. R.; Park, J.; Lee, J. S.; Tang, Y. J.; Chen, L.-H.; Jin, S.; Song, S. A.; O'Brien, J. R., "Enhanced room temperature ferromagnetism in Co- and Mn-ion-implanted silicon," Appl. Phys. Lett. 2006, 89, 112502.
32. Wu, H. W.; Tsai, C. J.; Chen, L. J., "Room temperature ferromagnetism in Mn+-implanted Si nanowires," Appl. Phys. Lett. 2007, 90, 043121.
33. Ohno, H., "Making nonmagnetic semiconductors ferromagnetic," Science 1998, 281, 951-956.
34. Kulkarni, J. S.; Kazakova, O.; Holmes, J. D., "Dilute magnetic semiconductor nanowires," Appl. Phys. A 2006, 85, 277-286.
35. Dietl, T.; Ohno, H., "Engineering magnetism in semiconductors," Materials Today 2006, 9, 18-26.
36. Zhou, J. P.; Chen, N. F.; Song, S. L.; Chai, C. L.; Yang, S. Y.; Liu, Z. K.; Lin, L. Y., "Magnetic properties of silicon doped with gadolinium," Appl. Phys. A 2003, 77, 599-602.
37. Seo, K.; Varadwaj, K. S. K.; Mohanty, P.; Lee, S.; Jo, Y.; Jung, M.-H.; Kim, J.; Kim, B., "Magnetic properties of single-crystalline CoSi nanowires," Nano. Lett. 2007, 7, 1240-1245.
38. Hattori, A. N.; Hattori, K.; Kodama, K.; Hosoito, N.; Daimon, H., "Formation of ferromagnetic interface between β-FeSi2 and Si (111) substrate," Appl. Phys. Lett. 2007, 91, 201916.
39. Schmidt, V.; Senz, S.; Goesele, U., "Diameter-dependent growth direction of epitaxial silicon nanowires," Nano Lett. 2005, 5, 931-935.
40. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., "Handbook of X-Ray Photoelectron Spectroscopy," Physical Electronics: 1995.
41. Taniguchi, M.; Nakagome, H.; Takahei, K., "Luminescence intensity and lifetime dependences on temperature for Nd-doped GaP and GaAs," Appl. Phys. Lett. 1991, 58, 2930-2932.
42. Kawai, S.; Masaki, T.; Kato, Y.; Motooka, T., "Luminescence from Nd- and Dy-ion-implanted 4H–SiC," Appl. Phys. Lett. 2006, 88, 191904.
43. MacDonald, A. N.; Hryciw, A.; Lenz, F.; Meldrum, A., "Interaction between amorphous silicon nanoclusters and neodymium ions," Appl. Phys. Lett. 2006, 89, 173132.
44. Au, F. C. K.; Wong, K. W.; Tang, Y. H.; Zhang, Y. F.; Bello, I.; Lee, S. T., "Electron field emission from silicon nanowires," Appl. Phys. Lett. 1999, 75, 1700-1702.
45. Behrendt, D. R.; Legvold, S.; Spedding, F. H., "Magnetic properties of neodymium single crystals," Phys. Rev. 1957, 106, 723-725.
46. Castilho, J. H.; Marques, F. C.; Barberis, G. E.; Rettori, C.; Alvarez, F.; Chambouleyron, I., "New paramagnetic center in amorphous silicon doped with rare-earth elements," Phys. Rev. B 1989, 39, 2860-2863.
47. Boulet, P.; Weitzer, F.; Hiebl, K.; Noel, H., "Structural chemistry, magnetism and electrical properties of binary Nd silicides," J. Alloys Comp. 2001, 315, 75-81.
48. Chueh, Y. L.; Chou, L. J.; Cheng, S. L.; He, J. H.; Wu, W. W.; Chen, L. J., "Synthesis of taperlike Si nanowires with strong field emission," Appl. Phys. Lett. 2005, 86, 133112.
49. Jagannathan, H.; Deal, M.; Nishi, Y.; Woodruff, J.; Chidsey, C.; McIntyre, P. C., "Nature of germanium nanowire heteroepitaxy on silicon substrates," J. Appl. Phys. 2006, 100, 024318.
50. Adhikari, H.; Marshall, A. F.; Chidsey, C. E. D.; McIntyre, P. C., "Germanium nanowire epitaxy: shape and orientation control," Nano. Lett. 2006, 6, 318-323.
51. He, J. H.; Wu, W. W.; Lee, S. W.; Chen, L. J.; Chueh, Y. L.; Chou, L. J., "Synthesis of blue-light-emitting Si1−xGex oxide nanowires," Appl. Phys. Lett. 2005, 86, 263109.
52. Yang, J.-E.; Jin, C.-B.; Kim, C.-J.; Jo, M.-H., "Band-gap modulation in single-crystalline SiGe nanowires," Nano. Lett. 2006, 6, 2679-2684.
53. Whang, S. J.; Lee, S. J.; Yang, W. F.; Cho, B. J.; Kwong, D. L., "Study on the synthesis of high quality single crystalline Si1−xGex nanowire and its transport properties," Appl. Phys. Lett. 2007, 91, 072105.
54. Kim, C.-J.; Yang, J.-E.; Lee, H.-S.; Jang, H. M.; Jo, M.-H.; Park, W.-H.; Kim, Z. H.; Maeng, S., "Fabrication of Si1−xGex alloy nanowire field-effect transistors," Appl. Phys. Lett. 2007, 91 033104.
55. Wu, Y.; Fan, R.; Yang, P., "Block-by-block growth of single-crystalline Si/SiGe superlattice nanowires," Nano. Lett. 2002, 2, 83-86.
56. Zakharov, N. D.; Werner, P.; Gerth, G.; Schubert, L.; Sokolov, L.; Goesele, U., "Growth phenomena of Si and Si/Ge nanowires on Si (111) by molecular beam epitaxy," J. Cryst. Growth 2006, 290, 6-10.
57. Lew, K.-K.; Pan, L.; Dickey, E. C.; Redwing, J. M., "Vapor-liquid-solid growth of silicon-germanium nanowires," Adv. Mater. 2003, 15, 2073-2076.
58. Qi, C.; Goncher, G.; Solanki, R.; Jordan, J., "SiGe nanowire growth and characterization," Nanotechnology 2007, 18, 075302.
59. Zhang, X.; Lew, K.-K.; Nimmatoori, P.; Redwing, J. M.; Dickey, E. C., "Diameter-dependent composition of vapor−liquid−solid grown SiGex nanowires," Nano. Lett. 2007, 7, 3241-3245.
60. Kawashima, T.; Imamura, G.; Fujii, M.; Hayashi, S.; Saitoh, T.; Komori, K., "Raman and electron microscopic studies of Si1−xGex alloy nanowires grown by chemical vapor deposition," J. Appl. Phys. 2007, 102, 124307.
61. Givan, U.; Patolsky, F., "Pressure-modulated alloy composition in Si1-xGex nanowires," Nano. Lett. 2009, 9, 1775.
62. Li, D.; Wu, Y.; Fan, R.; Yang, P.; Majumdar, A., "Thermal conductivity of Si/SiGe superlattice nanowires," Appl. Phys. Lett. 2003, 83, 3186-3188.
63. King, T.-J.; Saraswat, K. C., "Deposition and properties of low-pressure chemical vapor deposited polycrystalline silicon-germanium films," J. Electrochem. Soc. 1994, 141, 2235-2241.
64. Choi, W. K.; Teh, L. K.; Bera, L. K.; Chim, W. K.; Wee, A. T. S.; Jie, Y. X., "Microstructural characterization of rf sputtered polycrystalline silicon germanium films," J. Appl. Phys. 2002, 91, 444-450.
65. Alonso, M. I.; Winer, K., "Raman spectra of c-Si1-xGex alloys," Phys. Rev. B 1989, 39, 10056-10062.
66. Nishimura, C.; Imamura, G.; Fujii, M.; Kawashima, T.; Saitoh, T.; Hayashi, S., "Raman characterization of Ge distribution in individual Si1−xGex alloy nanowires," Appl. Phys. Lett. 2008, 93, 203101.
67. Lu, Q.; Adu, K. W.; Gutierrez, H. R.; Chen, G.; Lew, K.-K.; Nimmatoori, P.; Zhang, X.; Dickey, E. C.; Redwing, J. M.; Eklund, P. C., "Raman Scattering from Si1-xGex Alloy Nanowires," J. Phys. Chem. C 2008, 112, 3209-3215.
68. Wu, Y.; Yang, P., "Germanium nanowire growth via simple vapor transport," Chem. Mater. 2000, 12, 605-607.
69. Seki, H.; Araki, H., "A thermodynamical study of the growth rate of epitaxial silicon from SiI4," Jpn. J. Appl. Phys. 1965, 9, 645-651.
70. Silva, A. J. R. d.; Fazzio, A., "Stabilization of substitutional Mn in silicon-based semiconductors," Phys. Rev. B 2004, 70, 193205.
71. Yeh, P. H.; Yu, C. H.; Chen, L. J.; Wu, H. H.; Liu, P. T.; Chang, T. C., "Low-power memory device with NiSi2 nanocrystals embedded in silicon dioxide layer," Appl. Phys. Lett. 2005, 87, 193504.
72. Yeh, P. H.; Chen, L. J.; Liu, P. T.; Wang, D. Y.; Chang, T. C., "Metal nanocrystals as charge storage nodes for nonvolatile memory devices," Electro. Acta 2007, 52, 2920-2926.
73. Ovshinsky, S. R., "Reversible electrical switching phenomena in disorder structures," Phy. Rev. Lett. 1968, 21, 1450-1453.
74. Lai, S.; Lowrey, T., "A 180 nm nonvolatile memory cell element technology for stand alone and embedded applications," IEDM Tech. Dig. 2001, 803-806.
75. Pirovano, A.; Lacaita, A. L.; Merlani, D.; Benvenuti, A.; Pellizzer, F.; Bez, R., "Electronic switching effect in phase-change memory cell," IEDM Tech. Dig. 2002, 923-926.
76. Lankhorst, M. H. R.; Ketelaars, B. W. S. M. M.; Wolters, R. A. M., "Low-cost and nanoscale non-volatile memory concept for future silicon chips," Nat. Mat. 2005, 4, 347-352.
77. Lee, S.-H.; Jung, Y.; Agarwal, R., "Highly scalable non-volatile and ultra-low-power phase-change nanowire memory," Nat. Nanotech. 2007, 2, 626-630.
78. Lee, H.; Kang, D.-H., "Switching characterization and failure analysis of In2Se3 based phase change memory," Jpn. J. Appl. Phys. 2005, 44, 4759-4763.
79. Kolobov, A. V.; Fons, P.; Tominaga, J.; Frenkel, A. I.; Ankudinov, A. L.; Yannopoulos, S. N.; Andrikopoulos, K. S.; Uruga, T., "Why phase-change media are fast and stable: a new approach to an old problem," Jpn. J. Appl. Phys. 2005, 44, 3345-3349.
80. Nishida, T.; Terao, M.; Miyauchi, Y.; Horigome, S.; Kaku, T.; Ohta, N., "Single beam overwrite experiment using In-Se based phase-change optical media," Appl. phys. Lett. 1987, 50, 667-669.
81. Sun, X.; Yu, B.; Ng, G.; Nguyen, T. D.; Meyyappan, M., "III-VI compound semiconductor indium selenide (In2Se3) nanowires : Synthesis and characterization," Appl. Phys. Lett. 2006, 89, 233121.
82. Yu, B.; Ju, S.; Sun, X.; Ng, G.; Nguyen, T. D.; Meyyappan, M.; Janes, D. B., "Indium selenide nanowire phase-change memory," Appl. Phys. Lett. 2007, 91, 133119.
83. Peng, H.; Schoen, D. T.; Meister, S.; Zhang, X. F.; Cui, Y., "Synthesis and Phase Transformation of In2Se3 and CuInSe2 Nanowires," J. Am. Chem. Soc. 2007, 129, 34-35.
84. Rogach, A. L.; Eychmuller, A.; Hickey, S. G.; Kershaw, S. V., "Infrared-emitting colloidal nanocrystals : synthesis, assembly, spectroscopy, and applications," Small 2007, 3, 536-557.
85. Landuty, J. V.; Tendeloo, G. V.; Amelincks, S., "Phase transition in In2Se3 as studied by electron microscopy and electron diffraction," Phys. Stat. Sol. A 1975, 30, 299-314.
86. Peng, H.; Xie, C.; Schoen, D. T.; Cui, Y., "Large anisotropy of electrical properties in layer-structured In2Se3 nanowires," Nano. Lett. 2008, 8, 1511-1516.
87. Marsillac, S.; Bernede, J. C.; Ny, R. L.; Conan, A., "A new simple technique to obtain In2Se3 polycrystalline thin films," Vacuum 1995, 46, 1315-1323.
88. Julien, C.; Eddrief, M.; Kambas, K.; Balkanski, M., "Electrical and optical properties of In2Se3 thin films," Thin Solid Films 1986, 137, 27-37.
89. Adler, D.; Shur, M. S.; Silver, M.; Ovshinsky, S. R., "Threshold switching in chalcogenide-glass thin films," J. Appl. Phys. 1980, 51, 3289-3309.
90. Bidjin, D.; Popovic, S.; Celustka, B., "Some electrical and optical properties of In2Se3," Phys. Stat. Sol. A 1971, 6, 295-299.