簡易檢索 / 詳目顯示

研究生: 李竑逸
Lee, Hung-Yi
論文名稱: 氣候變遷下離島土地調適環境效率評估之研究 以金門縣為例
A Study on the Climate Change Assessment of Environmental Efficiency and Land Adaptation: The Case of Kinmen, Taiwan
指導教授: 黃書偉
Huang, Shu-Wei
口試委員: 郭幸福
Kuo, Hsing-Fu
張曜麟
Chang, Yao-Lin
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 環境與文化資源學系所
Department of Enivonmental and Cultural Resources
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: 氣候變遷土地調適環境脆弱度環境效率馬可夫鍊細胞自動機資料包絡分析
外文關鍵詞: Climate Change, Land-adaptation, Environmental Vulnerability Index, Environmental Efficiency, Cellular Automata-Markov, Data Envelopment Analysis
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據聯合國環境規劃署(United Nations Environment Programme,簡稱UNEP)於2017年所發佈全球環境展望報告(GEO6:Global environmental outlook)指出,自1980年以來,氣候變遷帶來的衝擊造成諸如地表溫度上升、海平面上升、乾旱…(Alfieri等人,2017; Rao等人,2019;Vitousek等人,2017)等環境災害,尤其離島地區空間範疇較小,更不易對其土地調適能力進行規劃,故應對環境變遷之土地調適便成為離島地區重要規劃課題。
    近年來,脆弱度(vulnerability)研究成為詮釋環境影響的核心。過去研究以脆弱度探討氣候變遷環境影響,多半探討單一時間之自然脆弱度,較難掌握複雜的環境衝擊關係,過去雖有研究利用環境脆弱度模擬未來土地使用變化及空間分布情形,提供離島地區土地使用規劃與管理政策之依據,然而其研究成果無法反映環境與各指標間之效益關係。因此,本研究就經濟學角度,計算環境影響指標進行效率評估,有效了解各項指標間效率值並掌握其與未來土地使用變化之關係。
    基於上述原因,本研究以金門縣為研究地區,首先針對離島範疇提出重要脆弱度指標,將研究地區分割為20M×20M之網格(grid),並綜合考量過去國內外脆弱度分析與評估方法,運用地理資訊系統計算金門脆弱度情形,將計算結果投入細胞自動機(CA)模擬未來土地使用變遷,並藉由資料包絡分析(DEA)評估金門地區環境效率,藉此掌握離島各項環境轉變效率因子與土地調適間之關係,提供金門縣未來相關規劃依據,以因應氣候變遷之衝擊,提高整體其抗災能力。


    According to the Global Environment Outlook (GEO6: Global environmental outlook) report released by the United Nations Environment Programme (UNEP) in 2017, since 1980, the impact of climate change has caused Level rise, drought ... (Alfieri et al., 2017; Rao et al., 2019; Vitoousek et al., 2017) and other environmental disasters. In particular, the spatial scope of the offshore islands is relatively small, and it is more difficult to plan their capabilities of land adaptation. Therefore, land adaptation of environmental changes has become an important planning issue in the offshore islands.
    In recent years, vulnerability research has become the core of interpreting environmental impacts (Miller et al., 2010). In the past studies, the environmental impacts of climate change were discussed in terms of vulnerability, and mostly explore the natural vulnerability of a single time. It is difficult to grasp the complex environmental impact relationship. Although some studies in the past that used environmental fragility to simulate the change of future land use and the condition of spatial distribution, it provides a basis for land use planning and management policies in the offshore islands. However, the research results cannot reflect the beneficial relationship between the environment and various indicators. Therefore, this study from economics perspective, calculate environmental impact indicators for efficiency assessment to effectively understand the efficiency values of each indicator and grasp its relationship with the change of future land use.
    On the basis of the above reasons, the study takes the Kinmen as the research area. First, purpose 10 important vulnerability indicator and divide research area into the grid of 20M × 20M. It also comprehensively considers the analysis of vulnerability and the method of assessment domestic or foreign in the past. The Geographic Information System was used to calculate the vulnerability of Kinmen. The calculation results were put into a Cellular Automaton (CA) to simulate the changes of future land use, and the Data Envelopment Analysis (DEA) was used to evaluate the efficiency among various indicators. In this way, it can grasp the relationship between the various efficiency factors of environmental transformation and the land adaptation. Provide relevant future plan for Kinmen, in order to respond to the impact of climate change and improve its overall disaster resistance.

    摘要 第一章 緒論1 第一節 研究動機與目的1 第二節 研究內容與方法5 第三節 研究範疇8 第四節 研究流程9 第二章 文獻回顧與探討10 第一節 氣候變遷對離島之影響與衝擊10 第二節 脆弱度相關理論19 第三節 細胞自動機理論及相關研究26 第四節 資料包絡分析理論及相關研究33 第三章 研究設計 38 第一節 脆弱度指標計算與分析 38 第二節 細胞自動機與多重評估準則之結合43 第三節 土地調適之環境效率評估49 第四章 實證分析52 第一節 實證內容概述52 第二節 金門縣整體脆弱度計算54 第三節 土地使用變遷模擬63 第四節 環境轉變效率分析72 第五章 結論與建議83 第一節 研究結論83 第二節 研究建議87 第六章 參考文獻89

    國內文獻
    1.內政部消防署,(2016),「莫蘭蒂颱風中央災害應變中心總結報告」。
    2.吳宓珊,(2008),台灣主要都市環境發展效率評估,國立成功大學都市計劃研究所碩士論文。
    3.李永展,(2014),邁向韌性社會:脆弱度觀點。經濟前瞻,156,23-26。
    4.李宛柔,(2010),都市脆弱度指標系統動態分析之研究─以高雄都會區為例,國立臺北大學都市計劃研究所第十一屆碩士學位論文。
    5.周姝君,(2013),脆弱度分析於山坡地保育區域規劃之研究,逢甲大學都市計畫與空間資訊學系碩士班碩士論文。
    6.林佳怡,(2012),氣候變遷下鄉村地區脆弱度指標之建構與模擬,國立臺北大學不動產與城鄉環境學系碩士論文。
    7.林昀叡,(2015),氣候變遷對臺灣主要流域脆弱度影響分析之研究,逢甲大學水利工程與資源保育學系碩士班碩士論文。
    8.金門縣政府,(2019),「108 年金門縣水災危險潛勢地區保全計畫」。
    9.洪于婷、鄒克萬,(2006),地方永續發展空間結構變遷之分析,都市與計劃,33:321-3444。
    10.國家災害防救科技中心,(2011),「臺灣氣候變遷科學報告」。
    11.國家發展委員會,(2014),「國家氣候變遷調適行動計畫(102-106年)」。
    12.國家發展委員會,(2018),「中華民國人口推計(2018至2065年)」。
    13.張書瑋,(2011),氣候變遷下台灣海岸地區脆弱度分析,國立臺灣海洋大學河海工程學系碩士學位論文。
    14.郭幸福,(2010),都市土地發展之環境轉變效率影響因素之研究,國立成功大學都市計劃研究所博士學位論文。
    15.郭翡玉(2010),因應氣候變遷之國土調適策略-以台灣沿海地區為例,「都市與計劃」,第37卷,第1期,第47-69頁。
    16.陳志嘉(2007),臺灣在全球環境變遷下的脆弱性研究與發展,「環境與世界」,第16期,第47-71頁。
    17.陳怡臻,(2010),環境變遷對屏東沿海之脆弱性分析,國立臺北教育大學教育學院社會與區域發展學系碩士論文。
    18.陸曉筠(2010),台灣海島持續發展利用,「海峽兩岸海洋論壇-海洋環境管理學術研討會」。
    19.曾裕翔,(2019),以資料包絡分析法為基礎對臺灣所有縣市消防部門進行績效評估,國立高雄科技大學工業工程與管理系碩士班碩士論文。
    20.湯孔玲,(2012),因應台灣氣候變遷都市建築颱洪災害脆弱度之研究,國立聯合大學建築學系碩士班學位論文。
    21.程韋涵,(2012),低碳城市效率評估與影響因素分析,國立成功大學都市計劃學系研究所碩士論文。
    22.黃翔瑋,(2012),極端氣候下降雨引致淺層山崩之脆弱度評估,國立臺灣海洋 大學河海工程學系碩士學位論文。
    23.黃愍涵,(2015),都市化與洪災脆弱度之空間系統模擬─以臺北都會區為例,國立臺北大學都市計畫研究所第十六屆碩士學位論文。
    24.葉政忠,(2012),評估氣候變遷下島嶼城市之脆弱度-以澎湖馬公市為例,國立中山大學海洋環境及工程學系碩士論文。
    25.詹昀潔,(2014),都市化對都市脆弱度影響之分析—以台北都會區 1971年~2011年之洪災為例,國立臺北大學都市計劃研究所第十五屆碩士學位論文。
    26.鄒克萬、郭幸福、柯佩婷,(2010),評估都市土地使用變遷之自然環境效率一以永康市為例,都市與計劃,37(1):143-165。
    27.鄒克萬、黃書偉,(2007),都市土地使用變遷對自然環境衝擊之空間影響分析,地理學報,48:1-18。
    28.鄒克萬、顧嘉安、郭幸福,(2013),以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地使用型態之影響:以台北市為例,「都市與計劃」,41:43-66。
    29.雷人傑,(2012),氣候變遷下本土化海岸地區脆弱度評估與調適策略之研究,國立臺灣海洋大學河海工程學系碩士學位論文。
    30.靳鈞評,(2015),利用易損性曲線結合 Ca-Markov 模型預測坡地崩塌之警戒區-以陳有蘭溪集水區為例,逢甲大學都市計畫與空間資訊學系碩士論文。
    31.賴含郁,(2013),氣候變遷下海岸地區之脆弱度評估與調適策略研究-以高雄海岸為例,國立臺灣海洋大學河海工程學系碩士學位論文。
    32.賴政佑,(2017),颱洪災害脆弱度與調適能力之研究-以台中市為例,逢甲大學都市計畫與空間資訊學系碩士班碩士論文。
    33.賴啟宇,(2015),以馬可夫細胞自動機模擬都市變遷對環境的衝擊-以台中市為例,東海大學環境科學與工程學系碩士論文。
    34.蘇郁珊,(2017),評估氣候變遷下離島地區之脆弱度─以澎湖縣為例,國立成功大學都市計劃研究所碩士學位論文。
    35.顧嘉安,(2010),以馬可夫鍊細胞自動機模型模擬極端洪水對都市土地使用型態之影響─以台北市為例,國立成功大學都市計劃研究所碩士論文。

    國外文獻
    1.Abuelaish, B. & Olmedo, M. T. C. (2016), Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models, Arabian Journal of Geosciences, 9:274;https://doi.org/10.1007/s12517-015-2292-7
    2.Aburas, M. M., Ho, Y. M., Ramli, M. F. & Ash’aari, Z. H. (2017), Improving the capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio, International Journal of Applied Earth Observation and Geoinformation, 59: 65-78.
    3.Agarwal, C., Green, M. G., Grove, J. M., Evans, T. P., Schweik, C. M. (2002). A Review and Assessment of Land-Use Change Models: Dynamics of Space, Time, and Human Choice, Newton Square, PA: U.S. Department of Agriculture, Forest Service, Northeastern Research Station. 61 p.
    4.Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., Roo, A. d., Salamon, P., Wyser, K. and Feyen, L. (2017). Global projections of river flood risk in a warmer world, Earth’s Future, 5(2): 171–182.
    5.Amato, F., Maimone, B. A., Martellozzo, F., Nolè, G. & Murgante, B. (2016), The Effects of Urban Policies on the Development of Urban Areas, Sustainability, 8(4): 297;https://doi.org/10.3390/su8040297
    6.Atici, K. B. & Podinovski, V. V. (2015), Using data envelopment analysis for the assessment of technical efficiency of units with different specialisations: An application to agriculture, Omega, 54: 72-83.
    7. Azadi, M., Jafarian, M., Saen, R. F.& Mirhedayatian, S. M. (2015). A new fuzzy DEA model for evaluation of efficiency & effectiveness of suppliers in sustainable supply chain management context.Computers & Operations Research.54:274-285.
    8.Bathrellos, G. D., Skilodimou, H. D., Chousianitis, K., Youssef, A. M. & Pradhan, B. (2017). Suitability estimation for urban development using multi-hazard assessment map. Science of the Total Environment. 575: 119-134.
    9.Bezerra, S. A., Santos, F. J., Pinheiro, P. R. & Barbosa, F. R. (2017). Dynamic Evaluation of the Energy Efficiency of Environments in Brazilian University Classrooms Using DEA. Sustainability. 9(12),2373;https://doi.org/10.3390/su9122373.
    10.Bosetti, V. & Locatelli, G. (2008). A data envelopment analysis approach to the assessment of natural parks’economic efficiency & sustainability. The case of Italian national parks, Sustainable Development, 14(4):277-286.
    11.Dehnokhalaji, A. & Soltani, N. (2019), Gradual efficiency improvement through a sequence of targets, Journal of the Operational Research Society, 70(12): 2143-2152.
    12.Halmy, M. W. A., Gessler, P. E., Hicke, J. A. & Salem, B. B. (2015), Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA, Applied Geography, 63: 101-112.
    13.Intergovernmental Panel on Climate Change(IPCC).(2007). Climate Change 2007: Impacts, Adaptation & Vulnerability Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.
    14.Intergovernmental Panel on Climate Change(IPCC).(2013). Climate Change 2014: Impacts, Adaptation & Vulnerability of Working Groups II to the fifth Assessment Report of the Intergovernmental Panel on Climate Change.
    15.Li, X. & Gong, P., (2016), Urban growth models: progress and perspective, Science Bulletin, 61(21):1637-1650.
    16.Liu, J. S., Lu, L. Y. Y. & Lu, W.M. (2016). Research fronts in data envelopment analysis.Omega.58:33-45.
    17.Lorenzo-Toja, Y., Vazquez-Rowe, I., Chanel, S., Marin-Navarro, D., Moreira, T. M. & Feijoo, G. (2015). Eco-efficiency analysis of Spanish WWTPs using the LCA + DEA method.68:651-666.
    18.Ma, L. H., Hsieh, J. C. & Chiu, Y. H. (2019). A Study on the Effects of Energy & Environmental Efficiency at China’s Provincial Level. Energies. 12(4), 591; https://doi.org/10.3390/en12040591.
    19.Mahdiloo, M., Saen, R. F. & Lee, K. H. (2015),Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis, International Journal of Production Economics, 168: 279-289.
    20.Mardania, A., Zavadskasb, E. K., Streimikienec, D., Jusoha, A. & Khoshnoudia, M. (2017), A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency, Renewable and Sustainable Energy Reviews, 70: 1298-1322.
    21.Mariano, E. B., Sobreiro, V. A. & Rebelatto, D. A. N. (2015),Human development and data envelopment analysis: A structured literature review, Omega, 54: 33-49.
    22.Martellozzoa, F., Amatob, F., Murganteb, B. & Clarkec, K. C. (2018), Modelling the impact of urban growth on agriculture and natural land in Italy to 2030, Applied Geography, 91: 156-167.
    23.Merkert, R. & Assaf, A. G. (2015), Using DEA models to jointly estimate service quality perception and profitability – Evidence from international airports, Transportation Research Part A: Policy and Practice, 75: 42-50.
    24. Muis, S., Guneralp, B., Jongman, B., Aerts, J. C. J. H. & Ward, P. J. (2015). Flood risk & adapatation strategies under climate change & urban expansion: A probabilistic analysis using global data. Science of the Total Environment. 538:445-457.
    25.Musa, S. I., Hashim, M. & Reba, M. N. M. (2019), Geospatial modelling of urban growth for sustainable development in the Niger Delta Region, Nigeria, International Journal of Remote Sensing, 40(8): 3076-3104.
    26.Nourqolipour, R., Mohamed Shariff, A. R. B., Balasundram, S. K., Ahmad, N. B., Sood, A. M., Buyong, T. & Amiri, F. (2015), A GIS-based model to analyze the spatial and temporal development of oil palm land use in Kuala Langat district, Malaysia, Environmental Earth Sciences, 73(4): 1687-1700.
    27.Pan, S., Liu, D., Wang, Z., Zhao, Q., Zou, H., Hou, Y., Liu, P. & Xiong, L. (2017), Runoff Responses to Climate and Land Use/Cover Changes under Future Scenarios, Water, 9(7): 475; https://doi.org/10.3390/w9070475.
    28.Pozo, C., Limleamthong, P., Guo, Y., Green, T., Shah, N., Acha, S., Sawas, A., Wu, C., Siegert, M. & Guillén-Gosálbez, G. (2019), Temporal sustainability efficiency analysis of urban areas via Data Envelopment Analysis and the hypervolume indicator: Application to London boroughs, Journal of Cleaner Production, 239: 117839;https://doi.org/10.1016/j.jclepro.2019.117839.
    29.Prieto-Amparan, J. A., Villarreal-Guerrero, F., Martinez-Salvador, M., Manjarrez-Dominguez, C., Vazquez-Quintero, G. & Pinedo-Alvarez, A. (2019). Spatial near future modeling of l& use and land cover changes in the temperate forests of Mexico.PeerJ.7:6617;https://doi.org/10.6084/m9.figshare.7845212.v1.
    30.Qiang, Y. & Lam, N. S. N. (2015), Modeling land use and land cover changes in a vulnerable coastal region using artificial neural networks and cellular automata, Environmental Monitoring and Assessment, 187:57;https://doi.org/10.1007/s10661-015-4298-8.
    31.Rao, N., Lawson, E. T., Raditloaneng, W. N., Solomon, D. and Angula, M. N. (2019). Gendered vulnerabilities to climate change:insights from the semi-arid regions of Africa & Asia, Climate & Development, 11(1):14-26.
    32.Rimal, B., Zhang, Lifu., Keshtkar, H., Wang, N. & Lin, Y. (2017). Monitoring & Modeling of Spatiotemporal Urban Expansion & Land-Use/Land-Cover Change Using Integrated Markov Chain Cellular Automata Model. ISPRS International Journal of Geo-Information. 2017,6(9),288;https://doi.org/10.3390/ijgi6090288.
    33.Robaina-Alves, M., Moutinho, V. & Macedo, P. (2015),A new frontier approach to model the eco-efficiency in European countries, Journal of Cleaner Production, 103: 562-573.
    34.Shabanpour, H., Fathi, A., Yousefi, S. & Saen, R. F. (2019), Ranking sustainable suppliers using congestion approach of data envelopment analysis, Journal of Cleaner Production, 240: 118190.
    35.Song, M., Peng, J., Wang, J. & Zhao, J. (2018), Environmental efficiency and economic growth of China: A Ray slack-based model analysis, European Journal of Operational Research, 269: 51-63.
    36.South Pacific Applied Geoscience Commission (SOPAC). (2004). The Environmental Vulnerability Index (EVI). SOPAC Technical Report, 384.
    37.Sueyoshi, T., Yuan, Y. & Goto, M. (2017). A literature study for DEA applied to energy & environment. Energy Economics.62:104-124.
    38.Suzuki, S. & Nijkamp, P. (2016), An evaluation of energy-environment-economic efficiency for EU, APEC and ASEAN countries: Design of a Target-Oriented DFM model with fixed factors in Data Envelopment Analysis, Energy Policy, 88: 100-112.
    39.Talen, E. (2005). Land use zoning and human diversity: exploring the connection. Journal of Urban Planning and Development, 131(4):214-232.
    40.Thieken, A. H., Kienzler, S., Kreibich, H., Kuhlicke, C., Kunz, M., Mühr, B., Müller, M., Otto, A.,Petrow, T., Pisi, S. & Schröter, K. (2016). Review of the flood risk management system in Germany after the major flood in 2013. Ecology and Society. 21(2): 51; http://dx.doi.org/10.5751/ES-08547-210251.
    41.Tian, N., Tang, S., Che, A. & Wu, P. (2020), Measuring regional transport sustainability using super-efficiency SBM-DEA with weighting preference, Journal of Cleaner Production, 242: 118474; https://doi.org/10.1016/j.jclepro.2019.118474.
    42.Turner, II., B.L., Kasperson, R.E., Matson, P.A., McCarthy, J.J., Corell, R.W., Christensen, L., Eckley, N., Kasperson, J.X., Luers, A., Martello, M.L., Polsky, C., Pulsipher, A., Schiller, A. (2003). A framework for vulnerability analysis in sustainability science, Proceedings of the National Academy of Sciences US. 100: 8074–8079.
    43.UNEP (2017). GEO6: Global Environmental Outlook, New York: Earthscan.
    44.Varga, O. G., Pontius Jr., R. G., Singh, S. K. & Szabóa, S. (2019), Intensity Analysis and the Figure of Merit’s components for assessment of a Cellular Automata – Markov simulation model, Ecological Indicators, 101: 933-942.
    45.Vitousek, S., Barnard, P. L., Fletcher, C, H., Frazer, N., Erikson, L. and Storlazzi, C. D. (2017). Doubling of coastal flooding frequency within decades due to sea-level rise, Scientific Reports, 7: 1399;https://doi.org/10.1038/s41598-017-01362-7.

    QR CODE