簡易檢索 / 詳目顯示

研究生: 林正裕
Jeng-Yu Lin
論文名稱: Influence of Copper Interconnect Characteristics on Chemical Mechanical Planarization
指導教授: 萬其超
Chi-Chao Wan
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 201
中文關鍵詞: electroplatingCMPcorrosionslurry
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cu electroplating and chemical mechanical planarization (CMP) are two related roles in damascene process. In the first part of this dissertation, the influence of characteristics of IC Cu interconnects on CMP performance was investigated from Chapter 2 to 4. The effect of various frequencies of pulse current (PC) on the crystal orientation of Cu deposit was investigated in Chapter 2. When PC frequency was lower than 100 Hz, high (111)/(200) ratio after annealing was achieved, which enhanced the corrosion resistance, resulting in minimizing the amount of void defects after CMP process. However, the behaviors of additives used in filling features depend on the pulse frequency. While using PC at lower pulse frequency in plating, more PEG would be displaced by SPS, which implies that the mechanism of superfilling would be disrupted as PC at lower pulse frequency is applied to filling features. We therefore proposed a modified deposition approach comprising direct current (DC) and PC, which can reduce the void defects after CMP process based on the above experimental results. We also developed a mathematical model to determine the switched time from DC to PC.
    To achieve superfilling, several organic additives are usually employed in plating bath. These organic additives may result in incorporation of nonmetal impurities in Cu deposits. So, the effect of impurities distribution in Cu deposit on corrosion of Cu deposit during CMP process was studied in Chapter 3. The corrosion behavior was investigated by electrochemical and surface analytical techniques. Energy Dispersive X-ray (EDX) attached to Focus Ion Beam (FIB) was utilized to analyze the distribution of impurities. As more impurities were accumulated at grain boundary, the Cu oxide film formed on Cu deposit tended to be porous while immersed in CMP slurry. Therefore, corrosion was enhanced. The correlation between corrosion behavior and distribution of impurity was established in this chapter.
    In Chapter 4, the reaction which caused the formation of localized defects between the interface between Cu deposit and tantalum nitride (TaN) barrier layer was studied. The experimental results of potentiodynamic polarization and secondary ion mass spectroscopy (SIMS) demonstrate that galvanic corrosion was not the dominant factor for such localized defects in our system, most impurities, such as carbon (C) and chloride ion (Cl-), aggregated near the interface between Cu deposit and TaN barrier layer. As a result, the correlation between localized defects at the Cu/TaN interface and the distribution of impurities was proposed herein.
    In the second part of this dissertation, our studies at columbia university, we used a combined microfluidic, electrochemical device to characterize the adsorption and desorption behaviors of chemicals in solutions used for planarization techniques from Chapter 5 to 7. In Chapter 5, the adsorption and desorption kinetics of glycine and benzotriazole (BTA) in peroxide-based solution have been studied. The changes in time in the open circuit potential (OCP) of the working electrode were recorded. The OCP response demonstrates a transition consisting of two stages in the presence of BTA and glycine. During the first ~ 10 s, the OCP response seems to follow the behavior of a glycine-only solution. After that, the BTA adsorption behavior dominates. The desorption of glycine is characterized by a 10 ~ 20 s delay in changes in the OCP, followed by an abrupt change to the OCP. Desorption kinetics in the presence of BTA are considerably more complex. The interplay between glycine and BAT in peroxide-based solution at short times is discussed.
    In Chapter 6, the removal kinetics of organic residues remaining after CMP were studied. Citric acid at various pH values, ranging from 2 to 9, was investigated as the cleaning solution. The optimized pH value of the citric-acid cleaning solution seems to be 5. The in situ electrochemical methodology is effective for preliminary evaluation or optimization of cleaning solutions. In addition, the electrochemical methodology may be utilized in screening inhibitors used in CMP process for their susceptibility to post-process cleaning.
    Recently, electrochemical mechanical planarization (ECMP) is considered a potential replacement or complement to conventional CMP techniques. ECMP can operate at very low downforces (<1.0 psi), without slurry particles or oxidizers, and can also be tailored to achieve specific dissolution rates via applied potential. In Chapter 7, a possible ECMP electrolyte was developed through the modification of a phosphate based electrolyte, by the use of BTA. The pH value, electrolyte molarity, and BTA concentration were determined and studied by a rotating disk electrode and a microfluidic device. The 1 M pH 2 phosphate based electrolyte containing 0.01 M BTA is suitable for Cu EMP due to demonstration of inhibition effect, electrolyte stability, applicable dissolution rate, and quick adsorption ability of BTA. The planarization efficiency calculated from the removal rate with and without abrasion also demonstrates that the phosphate based electrolyte containing 0.01 M BTA has potential for use during Cu ECMP.


    Table of Contents Abstract.............................................I List of Figures......................................IV List of Tables.......................................XIII Chapter 1. Introduction and Literature Reviews.......1 1-1. Introduction..............................1 1-2. amascene Electroplating of Copper into Submicron Features....................... 4 1-3. Role of Additives for Copper Electroplating............................9 1-4. Incorporation of Impurities into Copper Deposit............................... ...18 1-5. Crystal Orientation of Copper Deposit.....22 1-6. A Brief View of pulse Plating.............27 1-7. Mechanism of Chemical Mechanical Planarization.............................31 1-8. Introduction to CMP Defects...............36 1-9. Motivation and Purpose....................39 Chapter 2. Void Defect Reduction after Chemical Mechanical Planarization of Trenches Filled by Direct/Pulse Plating..............................................41 2-1. Introduction..............................41 2-2. Experimental..............................43 2-3. Results and Discussion....................47 2-4. Conclusions.............................. 78 List of Symbols................................79 Chapter 3. Effect of Impurity Distribution on Corrosion Behavior of Electrodeposited Copper in H2O2 Based Slurry...............................................81 3-1. Introduction..............................81 3-2. Experimental..............................83 3-3. Results and Discussion....................86 3-4. Conclusions...............................101 Chapter 4. Impurities Induced Localized Corrosion between Copper and Tantalum Nitride during Chemical Mechanical Planarization........................................102 4-1.Introduction...............................102 4-2. Experimental..............................104 4-3. Results and Discussion....................108 4-4. Conclusions...............................118 Chapter 5. Adsorption and Desorption Studies of Glycine and Benzotriazole during Cu Oxidation in a Chemical Mechanical Polishing Bath ......................................119 5-1. Introduction..............................119 5-2. Experimental..............................121 5-3. Results and Discussion....................124 5-4. Conclusions...............................139 Chapter 6. Evaluation of Post-Cu CMP Cleaning of Organic Residues Using Microfluidic Device...................140 6-1. Introduction...............................140 6-2. Experimental...............................142 6-3. Results and Discussion.....................145 6-4. Conclusions................................152 Chapter 7. Investigation into the Characteristics of Phosphate Based Electrolytes for Use in Copper Electrochemical Mechanical Planarization.............153 7-1. Introduction...............................153 7-2. Experimental...............................156 7-3. Results and Discussion.....................160 7-4. Conclusions................................181 Chapter 8. Conclusions and Suggestions for Future Works................................................182 8-1. Conclusions................................182 8-2. Suggestions for Future Works...............186 References...........................................189 About the Author & Publication List..................200

    1. H. S. Rathore and D. Nguyen, ‘Effect of scaling of interconnection”, Copper metallization for sub-micron integrated, 8, 1998.
    2. S. P. Heng et al., International symposium on VLSI TSA, 164, 1995.
    3. 陳來助, “ULSI 超大型積體電路之銅導線技術”, 電子與材料, 1, 85, 1998.
    4. R. J. Contolini, S. T. Mayer, R. T. Graff, L. Tarte and A. F. Bernhardt, “Electrochemical Planarization of ULSI Copper”, Solid State Technol., 40, 155 , 1997.
    5. V. Dubin, C. Ting and R. W. Cheung, “Pulse Electroplating Copper or Copper Alloys”, U.S. Patent No. 5, 972, 192, 1999.
    6. Y. Morand, “Copper Metallization for Advanced IC: Requirements and Technological Solution”, Microelectron. Eng., 50, 391, 2000.
    7. R. J. Contolini, A. F. Bernhardt and S. T. Mayer, “Electrochemical Planarization for Multilevel Metallization”, J. Electrochem. Soc., 141, 2503, 1994.
    8. V. M. Dubin, C. H. Ting, and R. Cheung, “Electro-Chemical Deposition of Copper for ULSI Metallization”, VMIC Conference, June 10-12, 69, 1997.
    9. D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce and J. Slattery, Technical Digest, IEEE International Electron Devices Meeting, 773, 1997.
    10. P. C. Andricacos, "Electroplated Copper Wiring on IC Chips," Interface 7, 23, 1998.
    11. L. T. Romankiw, "Elimination of Undercut in Anodically Active Metal During Chemical Etching," U.S. Patent 3,853,715, December 10, 1974.
    12. P. C. Andricacos and L. T. Romankiw, "Magnetically Soft Materials: Their Properties and Electrochemistry," in Advances in Electrochemical Science and Engineering, Vol 3, H. Gerischer and C. W. Tobias, Eds., VCH Publishers, New York, 1994.
    13. M. Datta, R. V. Shenoy, C. Jahnes, P. C. Andricacos, J. Horkans, J. O. Dukovic, L. T. Romankiw, J. Roeder, H. Deligianni, H. Nye, B. Agarwala, H. M. Tong, and P. Totta, "Electrochemical Fabrication of Mechanically Robust PbSn C4 Interconnections," J. Electrochem. Soc. 142, 3779, 1995.
    14. M. M. Chow, J. E. Cronin, W. L. Guthrie, W. Kaanta, B. Luther, W. J. Patrick, K. A. Perry, and C. L. Standley, "Method for Producing Coplanar Multi-Level Metal/Insulator Films on a Substrate and for Forming Patterned Conductive Lines Simultaneously with Stud Vias," U.S. Patent 4,789,648, December 6, 1988.
    15. C.-K. Hu and J. M. E. Harper, "Copper Interconnections and Reliability," Mater. Chem. Phys. 52, 5, 1998.
    16. EVOLVE, ©1991-2002, Timothy S. Cale.
    17. S. Soukane, S. Sen, and T. S. Cale, J. Electrochem. Soc., 149, C74, 2002.
    18. G.. Milad and M. Lefebre, “Is Periodic Pulse Reverse the Right Copper Plating for Your PCB Manufacturing”, in AESF 5th International Pulse Plating Symposium, Chicago, AESF Society, Orlando, FL, 2000.
    19. R. D. Mikkola, Q. –T. Jiang and B. Carpenter, “Copper Electroplating for Advanced Interconnect Technology, Plating Surf. Finish., 87 (3), 81, 2000.
    20. J. Reid, S. Mayer, E. Broadbent, E. Klawuhn, and K. Ashtiani, “Factors Influencing Damascene Feature Fill Using Copper PVD and Electroplating”, Solid State Technology, 43, 86, 2000.
    21. D. Stroychev, Trans IMF, 76, 73, 1998.
    22. J. J. Kelly and A. C. West, J. Electrochem. Soc., 145, 3472, 1998.
    23. Jack W. Dini, Electrodeposition: The Materials Science of Coatings and Substrates, Noyes Publish, 1992, and references therein.
    24. M. Yokoi, S. Konishi, and T. Hayashi, Denki Kagaku oyobi Kogyo Butsuri Kagaku, 52, 218, 1984.
    25. P. Taephaisitphongse, and Y. Cao, and A. C. West, J. Electrochem. Soc., 148, C492, 2001.
    26. N. Zukauskaite and A. Malinauskas, Elektrokhimiya, 12, 1691, 1988.
    27. N. Zukauskaite and A. Malinauskas, Elektrokhimiya, 12, 1694, 1988.
    28. D. Stoychev and P. Stefanov, Russ. J. Electrochem., 30, 349 (1994).
    29. J. Reid, S. Mayer, E. Broadbent, E. Klawnhn, and K. Ashtiani, Solid State Technol. ,2000.
    30. D. Josell, D. Wheeler, W. H. Huber, J. E. Bonevich, and T. P. Moffat, J. Electrochem. Soc., 148, C767, 2001.
    31. A. C. West, S. Mayer, and J. Reid, Electrochem. Solid-State Lett., 4, C50, 2001.
    32. H. Deligianni, J. Horakans, K. Kwietniak, J. O. Dukovic, P. C. Andricacos, S. Boettcher, S.-C. Seo, P. Locke, A. Simon, S. Seymour, and S. Malhotra, Abstract 368, The Electrochemical Society Meeting Abstracts, Vol. 2000-1, Toronto, Ontario, Canada, May 14-18, 2000.
    33. K. Kondo, and T. Matsumoto, and K. Watanabe, J. Electrochem. Soc., 151, C250. 2004.
    34. K. Kondo, N. Yamakawa, and K. Hayashi, Abstract 358, The Electrochemical Society Meeting Abstracts, Vol. 2000-1, Toronto, Ontario, Canada, Meeting, May 14-18, 2000.
    35. K. Kondo, K. Hayashi, Z. Tanaka, and N. Yamakawa, J. Jpn Inst. Electron.
    Packag., 3, 607 (2000).
    36. K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, J. Appl. Electrochem., 559, 137 (2003).
    37. S. Krzewska, Electrochim. Acta, 42, 3531, 1997 and references therein.
    38. M. Yokoi, S. Konishi, and T. Hayashi, Denki Kagaku oyobi Kogyo Butsuri Kagaku, 51, 311 (1983).
    39. J. P. Reid and S. Mayer, in Advanced Metallization Conference 1999, p. 53, MRS, Warrendale, PA (2000).
    40. T. P. Moffat, D. Wheeler, W. H. Huber and D. Josell, Electrochem. Solid-StateLett., 4, C26 (2001).
    41. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford and D. Josell, J. Electrochem. Soc., 147, 4524 (2000).
    42. J. P. Healy and D. Pletcher, J. Electroanal. Chem., 338, 155 (1992).
    43. G. A. Hope and G. M. Brown, in Electrode Processes VI, A. Wieckowski and K.
    Itaya, Editors, PV 96-8, p. 215, The Electrochemical Society Proceedings Series,
    Pennington, NJ (1996).
    44. T. P. Moffat, D. Wheeler, M. D. Edelstein and D. Josell, IBM J. Res. Develop., 49, 19 (2005).
    45. T. P. Moffat, D. Wheeler and D. Josell, J. Electrochem. Soc., 151, C262 (2004).
    46. W. Zhang, S. H. Brongersma, N. Heylen, G. Beyer, W. Vandervorst and K. Maex, J. Electrochem. Soc., 152, C832 (2005).
    47. W. Zhang, S. H. Brongersma, T. Conard, W. Wu, M. Van Hove, W. Vandervorst and K. Maex, Electrochem. Solid-State Lett., 8, C95 (2005).
    48. M. Kang and A. A. Gewirth, J. Electrochem. Soc., 150, C426 (2003).
    49. C. W. Liu, Y. L. Wang, M. S. Tsai, H. P. Feng, S. C. Chang and G. J. Hwang, J. Vac. Sci. Technol. A, 23, 658 (2005).
    50. H. P. Feng, M. Y. Cheng, Y. L. Wang, S. C. Chang, Y. Y. Wang and C. C. Wan, Thin Solid Film, 500, 101 (2006).
    51. S. M. Rossnagel and T. S. Kuan, J. Vac. Sci. Technol. A, 20, 1911 (2002).
    52. M. W. Lane, C. E. Murry, F. R. McFeely, P. M. Vereecken and R. Rosenberg, Appl. Phys. Lett., 83, 2330 (2003).
    53. J. A. Thormton, J. Vac. Sci. Technol., 12, 830 (1975).
    54. H. Lee and S. S. Wang, J. Appl. Phys., 93, 3796 (2003).
    55. V. A. Vas’ko, I. Tabakovic and S. C. Riemer, Electrochemical and Solid-State Lett., 6, C100 (2003).
    56. T. Hara, K. Sakata, and Y. Yoshida, Electrochemical and Solid-State Lett., 5, C41 (2002).
    57. C. T. Lin and K. L. Lin, J. Mater. Sci.- Mater.Electron., 15, 757 (2004).
    58. A. Ibanez and E. Fatas, Surf. Coat. Technol., 191, 7 (2005).
    59. J. Oh, J. Lee and C. Lee, Mater. Chem. Phys., 73, 227 (2002).
    60. L. Bonou, M. Eyraud, R. Denoyel and Y. Massiani, Electrochem. Acta, 47, 4139 (2002).
    61. E. Gute□rrez Jr., “Recent Advances in Pulse Power Supply Technology and Plating Capability”, in AESF 5th International Pulse Plating Symposium, Chicago, AESF Society, Orlando, FL, 2000.
    62. A. J. Bard and L. R. Faulkner, Electrochemical Methods, p.252, John Wiley & Sons, NY, 1980.
    63. D. Landolt, “Mass Transfer in Pulse Plating”, in Theory and Practice of Pulse Plating, J. Cl. Puippe and F. Leaman, Editor, p.55, AESF Society, Orlando, FL, 1986.
    64. Chemical-Mechanical Polishing 2001: Advances and Future Challenges, S. V. Babu, K. C. Cadien, and H. Yano, Editors, Materials Research Society, Warrendale, PA (2001).
    65. P. B. Zantye, A. Kumar, and A. K. Sikder, Mater. Sci. Eng., R., 45, 89 (2004).
    66. J. M. Steigerwald, S. P. Murarka, and R. Gutmann, Chemical Mechanical Planarization of Microelectronic Materials, Wiley, New York (1997).
    67. A. Jindal and S. V. Babu, J. Electrochem. Soc., 151, G709 (2004).
    68. J. Luo and D. A. Dornfeld, IEEE Transactions on Semiconductor Manufacturing, 14, 112 (2001).
    69. Chemical-Mechanical Planarization, MRS Spring Meeting Proceeding, Vol. 732E, S. V. Babu, R. Singh, N. Hayaska and M. Oliver, Editors (Warrendals, PA, 2002).
    70. D. Zeidler, Z. Stavreva, M. Plotner and K. Dresher, Microelectron. Eng., 33, 259 (1997).
    71. T. Du, D. Tamboli, C. Desai and S. Seal, J. Electrochem. Soc., 151, G230 (2004).
    72. O. Kubaschewaki and B. E. Hopkins, Oxidation of Metals and Alloys, Butterworths, London (1953).
    73. T. Du, D. Tamboli, and V. Desai, Microelectron. Eng., 69, 1 (2003).
    74. H. Liang, J. M. Martin, and R. Lee, J. Electron. Mater., 30, 391 (2001).
    75. J. Lu, J. E. Garland, C. M. Pettit, S. V. Babu and D. Roy, J. Electrochem. Soc., 151, G717 (2004).
    76. V. R. K. Gorantla, K. A. Assiongbon, S. V. Babu and D. Roy, J. Electrochem. Soc., 152, G404 (2005).
    77. J. Hernandez, P. Wrschka and S. Ramarajan, J. Electrochem. Soc., 148, G389 (2001).
    78. M. A. Lovell and D. Roy, Electrochim. Acta, 43, 2117 (1998).
    79. T. H. Tsai, Y. F. Wu, and S. C. Yen, Appl. Surf. Sci., 214, 120 (2003).
    80. Y. Feng, W.-K. Teo, K.-S. Siow, K.-L. Tan, and A.-K. Hsieh, Corros. Sci., 38, 369 (1996).
    81. R. L. Deutscher and R. Woods, J. Appl. Electrochem., 16, 413 (1986).
    82. M. Hariharputhiran, J. Zhang, S. Ramarajan, J. J. Keleher, Y. Li, and S. V. Babu, J. Electrochem. Soc., 147, 3820 (2000).
    83. M. Sluyters-Rebach and J. H. Sluyters, in Comprehensive Treatise of Electrochemistry, Vol. 9, E. Yeager, J. O’M. Bockris, B. E. Conway, and S. Sarangapani, Editors, Chap. 4, Plenum Press, New York (1980).
    84. S. Aksu and F. Doyle, J. Electrochem. Soc., 149, G352 (2002).
    85. S. Aksu and F. Doyle, J. Electrochem. Soc., 148, B51 (2001)
    86. P. B. Zantye, Mater. Sci. Eng., R., 45, 89 (2004).
    87. J. M. Steigerwald, Mater. Chem. Phys., 41, 217 (1995).
    88. S. Mudhivarthi, N. Gitis, S. Kuiry, M. Vinogradov and A. Kumar, J. Electrochem. Soc., 153, G372 (2006).
    89. N. Elbel, B. Neureither, B. Ebersberger, and P. Lahnor, J. Electrochem. Soc., 145, 1659 (1998).
    90. V. Nguyen, Microelectron. Eng., 50, 403 (2000).
    91. S. H. Chang, Microelectron. Eng., 77, 76 (2005).
    92. P. Wrschka, J. Hernandez, G. S. Oehrlein and J. King, J. Electrochem. Soc., 147, 706 (2000).
    93. L. S. Leong, S. K. Lim, T. Y. Tse and L. Chan, in Processings of SPIE, K. W. Tobin, Jr and I. Emami, Editors, PV 5041, p. 61 (2004).
    94. L. Vanasupa, Y. C. Joo and P. R. Besser, J. Appl. Phys., 86, 2583 (1999).
    95. S. Jung, J. Uom, W. Cho, Y. Bae, Y. Chung, K. Kim and K. Kim, in Processings of the Reliability Physics Symposium 2001, p.42, 39th Annual IEEE International Conference, Orlando, Florida (2001).

    96. C. Lingk and M. E. Gross, J. Appl. Phys., 84, 5547 (1998).
    97. P. Singer, Semicond. Int., 6, 91 (1998).
    98. P. C. Andricacos, C. Uzoh, J. Horkans and H. Deligianni, IBM J. Res. Develop., 42, 567 (1998).
    99. D. Josell, D. Wheeler and T. P. Moffat, Electrochem. Solid-StateLett., 5, C49 (2002).
    100. M. Hayase, M. Taketani, K. Aizawa, T. Hatsuzawa and K. Hayabusa, Electrochem. Solid-StateLett., 5, C98 (2002).
    101. J. J. Kelly and A. C. West, J. Electrochem. Soc., 145, 3477 (1998).
    102. B. H. Wu, C. C. Wan and Y. Y. Wang, J. Appl. Electrochem., 33, 823 (2003).
    103. P. B. Zantye, Mater. Sci. Eng., R., 45, 89 (2004).
    104. S. Mudhivarthi, N. Gitis, S. Kuiry, M. Vinogradov and A. Kumar, J. Electrochem. Soc., 153, G372 (2006).
    105. D. Ernur, V. Terzieva, W. Wu, S. H. Brongersma and K. Maex, J. Electrochem. Soc., 151, B636 (2004).
    106. K. Weiss, S. Riedel, S. E. Schulz, M. Schwerd, H. Helneder, H. Wendt and T. Gessner, Microelectron. Eng., 50, 433 (2000).
    107. C. Y. Yang, J. S. Jeng and J. S. Chen, Thin Solid Films, 420-421, 398 (2002).
    108. B. K. Vainshtein, Modern Crystallography I. Symmetry of Crystals, Methods of Structural Crystallography, Springer-Verlag, Berlin (1981).
    109. A. C. West, C. C. Cheng and B. C. Baker, J. Electrochem. Soc., 145, 3070 (1998).
    110. N. Tantavichet and M. D. Pritzker, J. Electrochem. Soc., 149, C289 (2002).
    111. N. Tantavichet and M. D. Pritzker, J. Appl. Electrochem., 36, 49 (2006).
    112. N. Tantavichet and M. D. Pritzker, Electrochem. Acta, 50, 1849 (2005).
    113. J. P. Healy and D. Pletcher, J. Electroanal. Chem., 338, 155 (1992).
    114. G. A. Hope and G. M. Brown, in Electrode Processes VI, A. Wieckowski and K. Itaya, Editors, PV 96-8, p. 215, The Electrochemical Society Proceedings Series, Pennington, NJ (1996).
    115. W. P. Dow, H. S. Huang, M. Y. Yen and H. C. Huang, J. Electrochem. Soc., 152, C425 (2005).
    116. C. Gabrielli, P. Mocoteguy, H. Perrot, D. Nieto-Sanz and A. Zdunek, Electrochem. Acta, 51, 1462 (2006).
    117. M. Kang and A. A. Gewirth, J. Electrochem. Soc., 150, C426 (2003).
    118. S. K. Kim and J. J. Kim, Electrochem. Solid-StateLett., 7, C98 (2004).
    119. T. P. Moffat, B. Baker, D. Wheeler and D. Josell, Electrochem. Solid-StateLett., 6, C59 (2003).
    120. J. J. Kim, S. K. Kim and Y. S. Kim, J. Electroanal. Chem., 542, 61 (2003).
    121. D. Josell, B. Baker, C. Witt, D. Wheeler and T. P. Moffat, J. Electrochem. Soc., 149, C637 (2002).
    122. J. J. Kelly, C. Tian and A. C. West, J. Electrochem. Soc., 146, 2540 (1999).
    123. J. S. Newman, Electrochemical System, 2nd ed., Prentice-Hall, New York (1991).
    124. C. Madore, M. Matlosz, and D. Landolt, J. Electrochem. Soc., 143, 3927 (1996).
    125. C. Madore and D. Landolt, J. Electrochem. Soc., 143, 3936 (1996).
    126. J. W. E. Chern and H. Y. Cheh, J. Electrochem. Soc., 143, 3144 (1996).
    127. C. C. Cheng and A. C. West, J. Electrochem. Soc., 144, 3050 (1997).
    128. C. C. Cheng and A. C. West, J. Electrochem. Soc., 145, 560 (1998).
    129. Y. Cao, P. Taephaisitphongse, R. Chalupa and A. C. West, J. Electrochem. Soc., 148, C466 (2001).
    130. K. M. Yin, J. Electrochem. Soc., 145, 3851 (1998).
    131. S. K. Rangarajan, in Electrochemistry: A Specialist Periodical Report, Vol. 7, Chap.4, London Society of Chemistry (1980), and references therein.
    132. A. C. West, J. Electrochem. Soc., 147, 227 (2000).
    133. M. N. Ozisik, Finite Difference Methods in Heat Transfer, CRC Press, Boca Raton, FL (1994).
    134. W. C. Tsai, C. C. Wan and Y. Y. Wang, J. Electrochem. Soc., 149, C229 (2002).
    135. D. Edelstein, J. Heidenreich, R. Goldblatt, W. Cote, C. Uzoh, N. Lustig, P. Roper, T. McDevitt, W. Motsiff, A. Simon, J. Dukovic, R. Wachnik, H. Rathore, R. Schulz, L. Su, S. Luce and J. Slattery, IEEE International Electron Devices Meeting Technical Digest, 773 (1997).
    136. P.C. Andricacos, Electrochemical Society Interface Spring, 32 (1999).
    137. J. J. Kelly and A. C. West, Electrochem. Solid-State Lett., 2, 561 (1999).
    138. S. Miura, K. Oyamada, Y. Takada, and H. Honma, Electrochemistry (Tokyo, Jpn.), 69, 773 (2001).
    139. M. Stangl, V. Dittel, J. Acker, V. Hoffmann, W. Gruner, S. Strehle and K. Wetzig, Appl. Surf. Sci., 252, 158 (2005).
    140. C. W. Liu, Y. L. Wang, M. S. Tsai, H. P. Feng, S. C. Chang and G. J. Hwang, J. Vac. Sci. Technol. A, 23, 658 (2005).
    141. C. Witt, J. Srinivasan, and R. Carpio, in Electrochemical Processing in
    ULSI and MEMS, H. Deligianni, S. T. Mayer, T. P. Moffat, and G. R. Stafford, Editors, PV 2004-17, p. 57, The Electrochemical Society Proccedings Series, Pennington, NJ (2005).
    142. S. Lagrange, S.H. Brongersma, M. Judelewicz, A. Saerens,I. Vervoort, E. Richard, R. Palmans and K. Maex, Microelectr.Eng,. 50, 449 (2000).
    143. W. H. The, L.T. Koh, S.M. Chen, J. Xie, C.Y. Li and P.D.Foo, Microelectr. J., 31, 579 (2001).
    144. M. S. Yoon, Y.J. Park and Y.C. Joo, Thin Solid Films, 408, 230 (2002).
    145. Y. L. Kao, G. C. Tu, C. A. Huang and J. H. Chang, Mater. Sci. Eng. A, 382,104 (2004).
    146. S. H. Brongersma, E. Kerr, I. Vervoort, A. Saerens and K. Maex, J. Mater. Res., 17, 582 (2002).
    147. K. Shimizu, N. Kasahara, H. Habazaki, P. Skeldon and G.E. Thompson, Surf. Interface Anal, 35, 611 (2003).
    148. R. Caprio, J. Farkas and R. Jairath, Thin Solid Film, 266, 238 (1995).
    149. H. Hirabayashi, M. Higuchi, M. Kinoshita, H. Kaneko, N. Hagasaka, K. Mase, and J. Oshima, U.S. Pat. 5, 575, 885 (1996).
    150. H. Hirabayashi, M. Higuchi, M. Kinoshita, H. Kaneko, N. Hagasaka,
    K. Mase, and J. Oshima, no. 96-ISMIC-100P, in Proceedings of the 1st International VMIC Specialty Conference on CMP and Planarization, p. 119, Feb 22-23 (1996).
    151. C. M. Miller and R. L. Valentine, Water Res., 33, 2805 (1999).
    152. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions NACE, Houston, TX (1975).
    153. G. Xu, H. Liang, J. Zhao and Y. Li, J. Electrochem. Soc., 151, G688 (2004).
    154. M. Sonmasundrum, K. Kirtikara and M. Tanticharoen, Anal. Chim. Acta, 319, 59 (1996).
    155. Y. Zhu, K. Mimura and M. Isshiki, Oxid. Met., 62, 207 (2004).
    156. H. J. Grabke, Surf. Interface Anal., 30, 112 (2000).
    157. T. N. Rhodin, Jr., J. Am. Chem. Soc., 72, 5102 (1950).
    158. T. N. Rhodin, Jr., J. Am. Chem. Soc., 73, 3143 (1951).
    159. F. W. Young, Jr., J. V. Cathcart and A. T. Gwathmey, Acta Matall., 4, 145 (1956).
    160. T. Oku, M. Uekubo, E. Kawakami, K. Nii, T. Nakano, T. Ohta and M. Murakami, in Processings of the 12th International IEEE VLSI Multilevel Interconnection Conference, p. 182, Santa Clara, CA (1995).
    161. S. C. Sun, M. H. Tsai, C. E. Tsai and H. T. Chiu, in the 12th International IEEE VLSI Multilevel Interconnection Conference, p. 157, Santa Clara, CA (1995).
    162. E. Kolawa, J. S. Chen, J. S. Reid, P. J. Pokela and M. A, Nicolet, J. Appl. Phys., 70, 1369 (1991).
    163. K. Holloway, P. M. Fryer, C. Cabral, Jr., J. M. E. Harper, P. J. Bailey and K. H. Kelleher, J. Appl. Phys., 71, 5433 (1992).
    164. V. Brusic, R. Kistler, S. Wang, J. Hawkins and C. Schmidt, Chemical Mechanical Planarization in Integrated Circuit Device Manufacturing (2nd International Symposium), I. Ali, S. Raghavan and R. L. Opila, PV98-7, p. 119, The electrochemical Society Processings Series, NJ (1998).
    165. K. Tai, H. Ohtorii, S. Takahashi, N. Komai, H. Horikoshi, S. Sato, Y. Ohoka, Segawa, M. Ishihara, Z. Yasuda and T. Nogami, in Processings of the IEEE 2002 Interconnect Technology Conference, p. 194, Burlingama, CA (2002).
    166. D. Ernur, S. Kondo, D. Shamiryan and K. Maex, Microelectron. Eng., 64, 117 (2002).
    167. S. Tamilmani, W. Huang and S. Raghavan, J. Electrochem. Soc., 153, F53 (2006).
    168. S. C. Kuiry, S. Seal, W. Fei, J. Ramsdell, V. H. Desai, Y. Li, S. V. Babu and B. Wood, J. Electrochem. Soc., 150, C36 (2003).
    169. D. Tamboil, S. Seal and V. Desal, J. Vac. Sci. Technol. A., 17, 1168 (1999).
    170. G. A. Hope and G. M. Brown, in Electrode Processes VI, A. Wieckowski and K. Itaya, Editors, PV 96-8, p. 215, The Electrochemical Society Proceedings Series, Pennington, NJ (1996).
    171. S. Deshpande, S. C. Kuiry, M. Kliomov and S. Seal, Electrochem. Solid-State Lett., 8, G98 (2005).
    172. W. Zhang, S. H. Brongersma, N. Heylen, G. Beyer, W. Vandervorst and K. Maex, J. Electrochem. Soc., 152, C832 (2005).
    173. W. Zhang, S. H. Brongersma, T. Conard, W. Wu, M. Van Hove, W. Vandervorst and K. Maex, Electrochem. Solid-State Lett., 8, C95 (2005).
    174. G. Xu, H. Liang, J. Zhao and Y. Li, J. Electrochem. Soc., 151, G688 (2004).
    175. M.. Sonmasundrum, K. Kirtikara and M. Tanticharoen, Anal. Chim. Acta, 319, 59 (1996).
    176. V.R.K. Gorantla, K.A. Assiongbon, S. V. Babu and D. Roy, J. Electrochem. Soc., 152, G404 (2005).
    177. Y. Zhu, K. Mimura and M. Isshiki, Oxid. Met., 62, 207 (2004).
    178. H. J. Grabke, Surf. Interface Anal., 30, 112 (2000).
    179. Q. Luo, S. Ramarajan, and S. V. Babu, Thin Solid Film, 335, 160 (1998).
    180. M. T. Wang, M. S. Tsai, C. Liu, W. T. Tseng, T. C. Chang, L. J. Chen, and M. C. Chen, Thin Solid Films, 308-309, 518 (1997).
    181. M. Hariharaputhiran, S. Ramarajan, Y. Li, and S. V. Babu, in Chemical-Mechanical Polishing-Fundamentals and Challenges, S. V. Babu, S. Danyluk, M. I. Krishnan, and M. Tsujimura, Editors, p. 129, Materials Research Society, San Francisco, CA (2000).
    182. H. Hirabayashi, M. Higuchi, and K. Kabushiki, U.S. Pat. 5,575,885 (1996).
    183. R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J.
    Duquette, and S. P. Murarka, Thin Solid Films, 270, 596 (1995).
    184. D. Chopra, WO Pat. 00/28586 (2000).
    185. S. Aksu, L. Wang, and F. M. Doyle, J. Electrochem. Soc., 150, G718 (2003).
    186. S. Seal, S. C. Kuiry, and B. Heinmen, Thin Solid Films, 423, 243 (2003).
    187. T. Du, Y. Luo, and V. Desai, Microelectron. Eng., 71, 90 (2004).
    188. J. Rubim, I. G. R. Gutz, O. Sala, and W. J. Orville-Thomas, J. Mol. Struct., 100,
    571 (1983).
    189. D. Thierry and C. Leygraf, J. Electrochem. Soc., 132, 1009 (1985).
    190. H. Y. H. Chan and M. J. Neaver, Langmuir, 15, 3348 (1999).
    191. M. J. Armstrong and R. H. Muller, J. Electrochem. Soc., 138, 2303 (1991).
    192. F. El-Taib Heakal, and S. Haruyama, Corros. Sci., 20, 887 (1980).
    193. Y. Ein-Eli and D. Starosvetsky, Electrochim. Acta, 52, 1825 (2007).
    194. M. J. Willy and A. C. West, Electrochem. Solid-State Lett., 9, E17 (2006).
    195. M. J. Willey and A. C. West, J. Electrochem. Soc., 153, C728 (2006).
    196. Y. Ein-Eli, E. Abelev and D. Starosvetsky, J. Electrochem. Soc., 151, G236 (2004).
    197. J. Y. Lin, C. C. Wan, Y. Y. Wang, J. C. Chen, J. Y. Lai, Y. D. Fan and J. P.
    Chuang, J. Electrochem. Soc., 154, H530 (2007).
    198. M. V. Varquez, S. R. de Sanchez, E. J. Calvo, and D. J. Schiffrin, J. Electroanal.
    Chem., 374, 179 (1994).
    199. H. Yeung, H. Chan, and M. J. Weaver, Langmuir, 15, 3348 (1999).
    200. S. Y. Sayed, M. S. El-Deab, B. E. El-Anadouli, and B. B. Ateya, J. Phys. Chem., 107, 5575 (2003).
    201. A. Frignani, M. Fonsati, C. Monticelli, and G. Brunoro, Corros. Sci., 41, 1217 (1999).
    202. M. Metikos-Hukovic, R. Babic, and I. Paic, J. Appl. Electrochem., 30, 617 (2000).
    203. D. Ernur, V. Terzieva, W. Wu, S. H. Brongersma, and K. Maex, J. Electrochem.
    Soc., 151, B636 (2004).
    204. J. G. Park and T. G. Kim, in Processing of the 2007 Material Research Spring
    Meeting, Material Research Society, PV 991, p. C02-01 (2007), San Francisco, CA, USA.
    205. C. F. Yeh, C. W. Hsiao, and W. S. Lee, Appl. Surf. Sci., 216, 46 (2003).
    206. R. J. Gutmann, J. M. Steigerwald, L. You, D. T. Price, J. Neirynck, D. J. Duquette and S. P. Murarka, Thin Solid Films, 270, 596 (1995).
    207. Y. K. Hong, D. H. Eom, S. H. Lee, T. G. Kim, J. G. Park, and A. A. Busnaina, J.
    Electrochem. Soc., 151, G756 (2004).
    208. C. Reid, J. Daviot, and D. Holmes, Solid State Phenom., 103–104, 373 (2005).
    209. M. Kodera, Y. Nishioka, S. Shima, A. Fukunaga, and M. Tsujimura, Jpn. J. Appl.
    Phys., 44, 8396 (2005).
    210. A. Nishi, M. Sado, T. Miki, and Y. Fukui, Appl. Surf. Sci., 203-204, 470 (2003).
    211. M. J. Willey and A. C. West, J. Electrochem. Soc., 154, D156 (2007).
    212. J. W. Lee, M. C. Kang, and J. J. Kim, J. Electrochem. Soc., 152, C827 (2005).
    213. L. Chen, Semiconductor Fabtech, 24th ed., p. 137, Fabtech.org, London (2004).
    214. N. Chandrasekaran, S. Ramarajan, W. Lee, G. M. Sabde, and S. Meikle, J. Electrochem. Soc., 151, G882 (2004).
    215. R. J. Contolini, S. T. Mayer, R. T. Graff and L. Tarte, Solid State Technol., 40, 155 (1997).
    216. R. J. Contolini, A. F. Bernhardt and S. T. Mayer, J. Electrochem. Soc., 141, 2503 (1994).
    217. D. Padhi, J. Yahalom, S. Gandikota and G. Dixit, J. Electrochem. Soc., 150, G10 (2003).
    218. S. C. Chang, J. M. Shieh, C. C. Huang, B. T. Dai, and M. S. Feng, Jpn. J. Appl. Phys., 41, 7332 (2002).
    219. A. C. West, I. Shao and H. Deligiannia, J. Electrochem. Soc., 152, C652 (2005).
    220. Q. Luo and S. V. Babu, J. Electrochem. Soc., 147, 4639 (2000).
    221. K. Mansikkamaeki, P. Ahonen, G. Fabricius, L. Murtomaeki, and K. Kontturi, J. Electrochem. Soc., 152, B12 (2005).
    222. J. Rubim, I. G. R. Gutz, O. Sala, and W. J. Orville-Thomas, J. Mol. Struct., 100, 571 (1983).
    223. R. Youda, H. Nishinara, and K. Aramaki, Corros. Sci., 28, 87 (1988).
    224. M. J. Armstrong and R. H. Muller, J. Electrochem. Soc., 138, 2303 (1991).
    225. P. C. Andricacos and A. C. West, USA Pat. 0163083 A1,28 (2006).
    226. A. C. West, H. Deligianni, and P. C. Andricacos, IBM J. Res. & Dev., 49, 37 (2005).
    227. R. Babic, M. Metikos-Hukovic, and M. Loncar, Electrochim. Acta, 44, 2413 (1999)
    228. P. G. Fox, G. Lewis, P. J. Boden, Corros. Sci., 19, 457 (1979).
    229. Y. Jiang and J. B. Adams, Surf. Sci., 529, 428 (2003).
    230. A. Muthukumaran, V. Lowalekar, and S. Rahavan, Mater. Res. Soc. Symp. Proc., 914, F12 (2006).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE