簡易檢索 / 詳目顯示

研究生: 洪采君
Hung, Tsai-Chun.
論文名稱: 音樂專家之動態觸覺與其不同面向之動作能力
Haptic Perception and Different Domains of Motor Skills in Musicians
指導教授: 曾鈺婷
Tseng, Yu-Ting
口試委員: 李曜全
Li, Yao-Chuen
許馨仁
Hsu, Hsin-Jen
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 運動科學系
Physical Education
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 52
中文關鍵詞: 體感覺系統觸覺本體感覺手部協調
外文關鍵詞: somatosensory system, touch, proprioceptive, manual coordination
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目的:本研究旨在探討音樂專家之動態觸覺敏感度 (haptic sensitivity) 與敏銳度 (haptic acuity) 與其不同面向動作能力之相關性。方法:招募各22位音樂專家與無音樂經驗者執行兩個動態觸覺任務、Bruininks-Oseretsky Test of Motor Proficiency, Second Edition, Long Form (BOT-2-LF) 及Movement Assessment Battery for Children Second Edition (MABC-2) 動作能力測驗。動態觸覺的第一個任務為動態觸覺偵測任務 (haptic detection task),以慣用手食指來回觸摸方塊(由左至右),判斷是否該個方塊有弧度,紀錄動態觸覺偵測閾值 (haptic detection thresholds);第二任務為動態觸覺辨識任務 (haptic discrimination task),同樣的觸摸方式,每次測驗時要判別2個方塊中哪一個方塊有較高的弧度,紀錄動態觸覺辨識閾值 (haptic discrimination thresholds)。結果:在動態觸覺敏感度上,音樂專家之動態觸覺偵測閾值顯著低於無音樂經驗者 (p = .049)。在動態觸覺敏銳度上,動態觸覺辨識閾值兩組間則無顯著差異 (p > .05)。另外,動態觸覺偵測閾值與BOT-2手部協調相關性 (r = -.58,p = .000)。結論:本研究證實音樂專家之動態觸覺敏感度較無音樂經驗者佳。此外,有較佳的動態觸覺成年人,亦有較高程度的手部協調動作能力。


    Purpose: The purpose of this study was to investigate the relationship between haptic perception and different domains of motor skills in musicians. Method: We recruited 22 musicians and 22 control participants. All participants performed two haptic perception tasks and two standardized motor assessments: Bruininks-Oseretsky Test of Motor Proficiency, Second Edition, Long Form (BOT-2-LF) and Movement Assessment Battery for Children Second Edition (MABC-2). The first haptic is the haptic detection task. Participants touched a set of curvature blocks with the index finger of their dominant hand back and forth, and indicated which block was more curved. The second task is the haptic discrimination task. With the same exploratory procedure, participants determined which of the two blocks has the higher curvature. Haptic detection thresholds and haptic discrimination thresholds were obtained to measure haptic sensitivity and haptic acuity. Result: The results of the study found that in terms of haptic sensitivity, the haptic detection thresholds of musicians were significantly lower than controls (p = .049). However, the haptic discrimination thresholds were not significantly different between the two groups (p > .05). In addition, haptic detection thresholds were correlated with BOT-2 manual coordination (r = -.58, p = .000). Conclusion: This study confirms that the haptic sensitivity of musicians is better than controls. In addition, adults with better haptic functions also have a higher level of manual coordination.

    目錄 第壹章 緒論 1 第一節 問題背景 1 第二節 研究目的 3 第三節 研究假設 3 第四節 名詞操作性定義 4 第五節 研究範圍與限制 5 第貳章 文獻探討 6 第一節 體感覺系統中之動態觸覺定義及生理機制 6 第二節 體感覺系統對動作能力之重要性 9 第三節 音樂專家之體感覺 10 第四節 動態觸覺測量方式 11 第五節 音樂專家之動作能力特徵 12 第參章 研究方法 14 第一節 研究對象 14 第二節 研究工具 15 第三節 實驗設計與流程 16 第四節 實驗步驟 17 第五節 資料處理與統計分析 21 第肆章 結果 22 第一節 參與者基本資料 22 第二節 比較音樂專家組與無音樂經驗組在動態觸覺與不同面向動作能力的表現 23 第三節 音樂專家組與無音樂經驗組在動態觸覺與不同面向動作能力之間的關係 25 第伍章 討論與結論 36 第一節 音樂專家與無音樂經驗者在動態觸覺偵測閾值與動態觸覺辨識閾值差異 36 第二節 音樂專家與無音樂經驗者在不同面向之動態觸覺與動作能力間的關係 37 第三節 BOT-2長版與MABC-2第三階段的差異 38 第四節 結論 39 第五節 未來研究方向 39 參考文獻 40 附錄 49 附錄一 愛丁堡慣用手量表、學習樂器經驗調查表 49 附錄二 BOT-2動作能力測驗紙 51 附錄三 MABC-2動作能力測驗紙 52 表次 表2-1 四種感受器的感受程度及適應程度 6 表2-2 四種感受器的特徵及功能 6 表3-1 音樂專家組與無音樂經驗組的納入及排除條件 14 表3-2 BOT-2長版與MABC-2動作能力版本的整理 18 表4-1 參與者基本資料表 22 表4-2 比較音樂專家與無音樂經驗者在動態觸覺與動作能力的表現 23 表4-3-1 音樂專家與無音樂經驗組在動態觸覺與不同面向動作能力之間的關係 (n = 44) 26 表4-3-2 音樂專家組在動態觸覺與不同面向動作能力之間的關係 (n = 22) 30 表4-3-3 無音樂經驗組在動態觸覺與不同面向動作能力之間的關係 (n = 22) 33 圖次 圖1 18個觸覺曲率塊評估觸覺敏/銳度 15 圖2 每個方塊皆有相同的高度30公釐、長度150公釐及寬度25公釐,不同的彎曲頂面[依中心點高度(mm)表示,從平面0mm至高度彎曲20mm] 15 圖3 邏輯函數(logistic Weibull function)配合刺激強度,以參與者之75%口頭回答正確率對應之方塊刺激強度為其感覺閾值 16 圖4 實驗流程圖…………………………………………………………………………...16 圖4-2-1-1 音樂專家組與無音樂經驗組動態觸覺的差異 24 圖4-3-1-1 動態觸覺偵測閾值與BOT-2手部協調 29

    朱旆儀、李冠逸(2012)。整合型觸覺的特性。臺灣職能治療研究與實務雜誌,8(1),27-37。doi: 10.6534/jtotrp.2012.8(1).27

    Chu, P-Y., & Li, K-Y. (2012). Characteristics of haptic sense. Journal of Taiwan Occupational Therapy Research and Practice, 8(1), 27-37.

    Allingham, E., Burger, B., & Wöllner, C. (2021). Motor performance in violin bowing: Effects of attentional focus on acoustical, physiological and physical parameters of a sound-producing action. Journal of New Music Research, 50(5), 428-446. doi: 10.1080/09298215.2021.1978506

    Almeida, A., George, D., Smith, J., and Wolfe, J. (2013). The clarinet: How blowing pressure, lip force, lip position and reed “hardness” affect pitch, sound level, and spectrum. Journal of the Acoustical Society of America, 134(3), 2247-2255. doi: 10.1121/1.4816538

    Alves-Pinto, A., Ehrlich, S., Cheng, G., Turova, V., Blumenstein, T., & Lampe, R. (2017). Effects of short-term piano training on measures of finger tapping, somatosensory perception and motor-related brain activity in patients with cerebral palsy. Neuropsychiatric Disease and Treatment, 13, 2705-2718. doi: 10.2147/NDT.S145104

    Bensmaïa, S., & Hollins, M. (2005). Pacinian representations of fine surface texture. Perception and Psychophysics, 67(5), 842-854. doi: 10.3758/BF03193537

    Blake, D. T., Hsiao, S. S., & Johnson, K. O. (1997). Neural coding mechanisms in tactile pattern recognition: The relative contributions of slowly and rapidly adapting mechanoreceptors to perceived roughness. Journal of Neuroscience, 17(19), 7480-7489. doi: 10.1523/JNEUROSCI.17-19-07480.1997

    Bruininks, R. H. (1978). Bruininks-Oseretsky Test of Motor Proficiency. American Guidance Service.

    Bruininks, R. H., & Bruininks, B. D. (2005). Bruininks-Oseretsky Test of Motor Proficiency(2nd ed). Pearson Assessment.

    Chen, F. C., Pan, C. Y., Chu, C. H., Tsai, C. L., & Tseng, Y. T. (2020). Joint position sense of lower extremities is impaired and correlated with balance function in children with developmental coordination disorder. Journal of Rehabilitation Medicine, 52(8), jrm00088. doi: 10.2340/16501977-2720

    Edin, B. B., & Johansson, N. (1995). Skin strain patterns provide kinaesthetic information to the human central nervous system. Journal of Physiology, 487(1), 243-251. doi: 10.1113/jphysiol.1995.sp020875

    Elangovan, N., Herrmann, A., & Konczak, J. (2014). Assessing proprioceptive function: Evaluating joint position matching methods against psychophysical thresholds. Physical Therapy, 94(4), 553-561. doi: 10.2522/ptj.20130103

    Goodwin, A. W., Macefield, V. G., & Bisley, J. W. (1997). Encoding of object curvature by tactile afferents from human fingers. Journal of Neurophysiology, 78(6), 2881-2888. doi: 10.1152/jn.1997.78.6.2881

    Gordon, I. E., & Morison, V. (1982). The haptic perception of curvature. Perception and Psychophysics, 31(5), 446-450. doi: 10.3758/BF03204854

    Gori, M., Squeri, V., Sciutti, A., Masia, L., Sandini, G., and Konczak, J. (2012). Motor commands in children interfere with their haptic perception of objects. Experimental Brain Research 223, 149–157. doi: 10.1007/s00221-012-3248-8

    Groussard, M., Viader, F., Landeau, B., Desgranges, B., Eustache, F., & Platel, H. (2014). The effects of musical practice on structural plasticity: The dynamics of grey matter changes. Brain and Cognition, 90, 174-180. doi: 10.1016/j.bandc.2014.06.013

    Gzibovskis, T., & Marnauza, M. (2012). Development of young adults' fine motor skills when learning to play percussion instruments. Music Education Research, 14(3), 365-380. doi: 10.1080/14613808.2012.685453

    Henderson, S. E., Sugden, D. A. (1992). The Movement Assessment Battery for Children. The Psychological Corporation.

    Henderson, S. E., Sugden, D. A., Barnett, A. (2007). The Movement Assessment Battery for Children-Second Edition. The Psychological Corporation.

    Hirano, M., Kimoto, Y., & Furuya, S. (2020). Specialized somatosensory–motor integration functions in musicians. Cerebral Cortex, 30(3), 1148-1158. doi: 10.1093/cercor/bhz154

    Hirano, M., Sakurada, M., & Furuya, S. (2020). Overcoming the ceiling effects of experts’ motor expertise through active haptic training. Science Advances, 6(47), eabd2558. doi: 10.1126/sciadv.abd2558

    Hofmann, A., & Goebl, W. (2016). Finger forces in clarinet playing. Frontiers in Psychology, 7, 1140. doi: 10.3389/fpsyg.2016.01140

    Hollins, M., Bensmaïa, S. J., & Washburn, S. (2001). Vibrotactile adaptation impairs discrimination of fine, but not coarse, textures. Somatosensory and Motor Research, 18(4), 253-262. doi: 10.1080/01421590120089640

    Hosoda, M., & Furuya, S. (2016). Shared somatosensory and motor functions in musicians. Scientific Reports, 6, 37632. doi: 10.1038/srep37632

    Holst-Wolf, J., Tseng, Y. T., & Konczak, J. (2019). The Minnesota haptic function test. Frontiers in Psychology, 10, 818. doi: 10.3389/fpsyg.2019.00818

    Ingemanson, M. L., Rowe, J. R., Chan, V., Wolbrecht, E. T., Reinkensmeyer, D. J., & Cramer, S. C. (2019). Somatosensory system integrity explains differences in treatment response after stroke. Neurology, 92(10), e1098-e1108. doi: 10.1212/WNL.0000000000007041

    Jamali, A., Sadeghi-Demneh, E., Fereshtenajad, N., & Hillier, S. (2017). Somatosensory impairment and its association with balance limitation in people with multiple sclerosis. Gait and Posture, 57, 224-229. doi: 10.1016/j.gaitpost.2017.06.020

    Jírovec, J., Musálek, M., & Mess, F. (2019). Test of motor proficiency second edition (BOT-2): Compatibility of the complete and short form and its usefulness for middle-age school children. Frontiers in Pediatrics, 7, 153. doi: 10.3389/fped.2019.00153

    Johansson, R. S., Landström, U., & Lundström, R. (1982). Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to sinusoidal skin displacements. Brain Research, 244(1), 17-25. doi: 10.1016/0006-8993(82)90899-X

    Johansson, R. S., & Vallbo, A. B. (1983). Tactile sensory coding in the glabrous skin of the human hand. Trends in Neurosciences, 6(1), 27-32. doi: 10.1016/0166-2236(83)90011-5

    Johnson, K. O. (2001). The roles and functions of cutaneous mechanoreceptors. Current Opinion in Neurobiology, 11(4), 455-461. doi: 10.1016/S0959-4388(00)00234-8

    Johnson, K. O., & Lamb, G. D. (1981). Neural mechanisms of spatial tactile discrimination: Neural patterns evoked by braille-like dot patterns in the monkey. Journal of Physiology, 310, 117-144. doi: 10.1113/jphysiol.1981.sp013540

    Johnson, K. O., & Phillips, J. R. (1981). Tactile spatial resolution. I. Two-point discrimination, gap detection, grating resolution, and letter recognition. Journal of Neurophysiology, 46(6), 1177-1191. doi: 10.1152/jn.1981.46.6.1177

    Kappers, A. M., & Bergmann Tiest, W. M. (2013). Haptic perception. Wiley Interdisciplinary Reviews: Cognitive Science, 4(4), 357-374. doi: 10.1002/wcs.1238

    Knibestöl, M., & Vallbo, A. B. (1970). Single unit analysis of mechanoreceptor activity from the human glabrous skin. Acta Physiologica Scandinavica, 80, 178-195. doi: 10.1111/j.1748-1716.1970.tb04783.x

    Konczak, J., Li, K. Y., Tuite, P. J., & Poizner, H. (2008). Haptic perception of object curvature in Parkinson's disease. Plos One, 3(7), e2625. doi: 10.1371/journal.pone.0002625

    Kuo, Y. L., Kutch, J. J., & Fisher, B. E. (2019). Relationship between interhemispheric inhibition and dexterous hand performance in musicians and non-musicians. Scientific Reports, 9, 11574. doi: 10.1038/s41598-019-47959-y

    LaMotte, R. H., & Srinivasan, M. A. (1993). Responses of cutaneous mechanoreceptors to the shape of objects applied to the primate fingerpad. Acta Psychologica, 84(1), 41-51. doi: 10.1016/0001-6918(93)90071-X

    Lane, H., & Brown, T. (2015). Convergent validity of two motor skill tests used to assess school-age children. Scandinavian Journal of Occupational Therapy, 22(3), 161-172. doi: 10.3109/11038128.2014.969308

    Lechelt, E. C., Eliuk, J., & Tanne, G. (1976). Perceptual orientation asymmetries: A comparison of visual and haptic space. Perception and Psychophysics, 20(6), 463-469.

    Lechelt, E. C., & Verenka, A. (1980). Spatial anisotropy in intramodal and cross-modal judgments of stimulus orientation: The stability of the oblique effect. Perception, 9(5), 581-589. doi: 10.1068/p090581

    Lederman, S. J., & Klatzky, R. L. (2009). Haptic perception: A tutorial. Attention, Perception, and Psychophysics, 71(7), 1439-1459. doi: 10.3758/APP.71.7.1439

    Legge, G. E., Madison, C., Vaughn, B. N., Cheong, A. M. Y., & Miller, J. C. (2008). Retention of high tactile acuity throughout the life span in blindness. Perception and Psychophysics, 70(8), 1471-1488. doi: 10.3758/PP.70.8.1471

    Löfvenberg, J., & Johansson, R. S. (1984). Regional differences and interindividual variability in sensitivity to vibration in the glabrous skin of the human hand. Brain Research, 301(1), 65-72. doi: 10.1016/0006-8993(84)90403-7

    Louw, S., Kappers, A. M., & Koenderink, J. J. (2000). Haptic detection thresholds of Gaussian profiles over the whole range of spatial scales. Experimental Brain Research, 132(3), 369-374. doi: 10.1007/s002210000350

    Lubans, D. R., Morgan, P. J., Cliff, D. P., Barnett, L. M., & Okely, A. D. (2010). Fundamental movement skills in children and adolescents: Review of associated health benefits. Sports Medicine, 40(12), 1019-1035. doi: 10.2165/11536850-000000000-00000

    Newnham, C., and McKenzie, B. E. (1993). Cross-modal transfer of sequential visual and haptic shape information by clumsy children. Perception 22, 1061–1073. doi: 10.1068/p221061

    Olausson, H., Wessberg, J., & Kakuda, N. (2000). Tactile directional sensibility: Peripheral neural mechanisms in man. Brain Research, 866(1), 178-187. doi: 10.1016/S0006-8993(00)02278-2

    Prins, N. (2013). The psi-marginal adaptive method: How to give nuisance parameters the attention they deserve (no more, no less). Journal of Vision, 13(7), 3. doi: 10.1167/13.7.3

    Rand, D. (2018). Proprioception deficits in chronic stroke—Upper extremity function and daily living. Plos One, 13(3), e0195043. doi: 10.1371/journal.pone.0195043

    Rozé, J., Aramaki, M., Kronland-Martinet, R., & Ystad, S. (2020). Cellists’ sound quality is shaped by their primary postural behavior. Scientific Reports, 10(1), 13882. doi: 10.1038/s41598-020-70705-8

    Sciutti, A., Squeri, V., Gori, M., Masia, L., Sandini, G., & Konczak, J. (2010). Predicted sensory feedback derived from motor commands does not improve haptic sensitivity. Experimental Brain Research, 200, 259-267. doi: 10.1007/s00221-009-1996-x

    Shimono, K., Higashiyama, A., & Tam, W. J. (2001). Location of the egocenter in kinesthetic space. Journal of Experimental Psychology: Human Perception and Performance, 27(4), 848-861. doi: 10.1037//1523.27.4.848

    Tseng, Y. T., Chen, F. C., Tsai, C. L., & Konczak, J. (2021). Upper limb proprioception and fine motor function in young pianists. Human Movement Science, 75, 102748. doi: 10.1016/j.humov.2020.102748

    Tseng, Y. T., Holst-Wolf, J. M., Tsai, C. L., Chen, F. C., & Konczak, J. (2019). Haptic perception is altered in children with developmental coordination disorder. Neuropsychologia, 127, 29-34. doi: 10.1016/j.neuropsychologia.2019.02.004

    Tseng, Y. T., Tsai, C. L., Chen, F. C., & Konczak, J. (2019). Position sense dysfunction affects proximal and distal arm joints in children with developmental coordination disorder. Journal of Motor Behavior, 51(1), 49-58. doi: 10.1080/00222895.2017.1415200

    Tseng, Y. T., Tsai, C. L., & Chen, F. C. (2020). Wrist proprioceptive acuity is linked to fine motor function in children undergoing piano training. Journal of Neurophysiology, 124(6), 2052-2059. doi: 10.1152/jn.00282.2020

    Veale, J. F. (2014). Edinburgh handedness inventory–short form: A revised version based on confirmatory factor analysis. Laterality: Asymmetries of Brain, Behaviour, and Cognition, 19(2), 164-177. doi: 10.1080/1357650X.2013.783045

    Westling, G., & Johansson, R. S. (1987). Responses in glabrous skin mechanoreceptors during precision grip in humans. Experimental Brain Research, 66(1), 128-140.

    Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Klatzky, R. L., & Lederman, S. J. (2008). Sensation and perception (2nd ed.). Sinauer.

    Yau, J. M., Kim, S. S., Thakur, P. H., & Bensmaia, S. J. (2016). Feeling form: The neural basis of haptic shape perception. Journal of Neurophysiology, 115(2), 631-642. doi: 10.1152/jn.00598.2015

    Zarkou, A., Lee, S. C., Prosser, L. A., & Jeka, J. J. (2020). Foot and ankle somatosensory deficits affect balance and motor function in children with cerebral palsy. Frontiers in Human Neuroscience, 14, 45. doi: 10.3389/fnhum.2020.00045

    Zwicker, J. G., Harris, S. R., & Klassen, A. F. (2013). Quality of life domains affected in children with developmental coordination disorder: A systematic review. Child: Care, Health and Development, 39(4), 562-580. doi: 10.1111/j.1365-2214.2012.01379.x

    QR CODE