研究生: |
林鼎舜 Lin, Ding-Shun |
---|---|
論文名稱: |
應用於厭氧環境下細菌培養之無線傳輸型生物反應器 Wireless bioreactor for anaerobic cultivation of bacteria |
指導教授: |
楊雅棠
Yang, Ya-Tang |
口試委員: |
黃介辰
Huang, Chieh-Chen 張晃猷 Chang, Hwan-you |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 厭氧型細菌 、生物反應器 、資料無線傳輸 、大腸桿菌 、氫氣 |
外文關鍵詞: | anaerobic bacteria, bioreactor, data transmission, Escherichia coli, hydrogen |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
厭氧型細菌在微生物學裡是一門擁有廣泛興趣的研究,然而其無氧培養技術仍然十分地不便利。此論文裡我們呈現了一項技術可以進行厭氧培養的生物反應器,濁度測量、流體攪拌、氣體傳送以及資料無線傳輸等功能均在封閉的厭氧環境完成。其無氧環境是藉由氣體產氣包而非常見生物實驗室裡的厭氧操作台來達成。此研究以大腸桿菌進行培養並藉由不同碳源和氫氣當作能量來源來呈現。
Anaerobic bacteria are of great interests in wide range of microbiology and yet anaerobic cultivation technique remains cumbersome. Here we report an alternative cultivation strategy based on a bioreactor with the entire operation including turbidity measurement, fluid mixing, gas delivery and data transmission in a gas tight anaerobic enclosure. The anaerobic condition is achieved with gas pack with no need of anaerobic cabinet. Such a cultivation strategy is demonstrated with Escherichia coli with different carbon sources and hydrogen as energy source.
[1] A. C. Sonnenwirth, Evolution of anaerobic methodology. Am. J. Clin. Nutr. 25, (1972) 1295-1298.
[2] K. L. Anderson and D.Y.C. Fung. Anaerobic methods, techniques and principles for food bacteriology: a review. J. Food Protection 46, (1983) 811-822.
[3] P. A. Leach, J. J. Bullen, and I. D. Grant. Anaerobic CO2 cabinet for the cultivation of strict anaerobes. Appl. Microbiol. 22, (1971), 824-827.
[4] J. H. Brewer. A new petri dish cover and technique for use in the cultivation of anaerobes and microaerophiles. Science 95, (1942), 987.
[5] J. H. Brewer and J. H. Brown. A method for utilizing illuminating gas in the Brown, Fildes and McIntosh or other anaerobic jars of the Laidlaw principle. J. Lab. Clin. Med. 23, (1938) , 870-874.
[6] J. Betts and F. Baganz. Miniature bioreactors: current practices and future opportunities. Micro Cell Fact. 5, (2006) 21 doi:10.1186/1475-2859-5-21
[7] C. N. Takahashi, A. W. Miller, F. Ekness, M. J. Dunham and E. Klavins. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol. 4, (2014) 32.
[8] E. Toprak, A. Veres, J. B. Michel, R. Chait, D. L. Hartl, R. Kishony . Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics. 44, (2012) 101-106.
[9] E. Toprak, A. Veres, S. Yildiz, J. M. Pedraza, R. Chait, J. Paulsson, and R. Kishony. Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8, (2013) 555−567.
[10] P. C. Liu, Y. T. Lee, C. Y Wang, and Y. T. Yang. Design and use of a low cost, automated morbidostat for adaptive evolution of bacteria under antibiotic drug selection. J. Vis. Exp. 1154, (2016) e54426.
[11] H.K.Wang and Y.T.Yang. Mini photobioreactors for in vivo real-time characterization and evolutionary tuning of bacterial optogenetic circuit. ACS Synth. Biol. (2017) DOI: 10.1021/acssynbio.7b0009.
[12] T. Pilizota and Y.T.Yang. Do it Yourself microbial cultivation techniques for synthetic and systems biology: cheap, fun and flexible. Front. Microbiol. 9, (2018), 1666
[13] C. N. Takahashi, A. W. Miller,Ekness, F., Dunham, M. J., and Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol. (2014), DOI: 10.1021/ sb500165g.
[14] O. Paliy , T.S. Gunasekera. Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Appl. Microbiol. Biotechnol. (2007) 73, 1169-1172.
[15] Thomas E. Crozier, Sachio Yamamoto. Solubility of hydrogen in water, sea water, and sodium chloride solutions. Journal of Chemical & Engineering Data (1974) 19, 3, 242-244
[16] F. C. Neidhart, J.L.M. Ingraham,Schaechter. Physiology of the bacterial cell: a molecular approach. (1990) Cary:Sinauer Associates.
[17] J. D. Orth, I. Thiele, and B. Ø. Palsson. What is flux balance analysis. Nat. Biotechnol. 28, (2010) 245−248.
[18] J. E. Gonzalez, C. P. Long, and M. R. Antoniewicz Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering 39 (2017) 9–18.
[19] J. Macy, H. Kulla, and G. Gottshohalk, H2 dependent anaerobic growth of Escherichia coli on L-Malate : succinate formation, J. Bacteriology, (1976) 423-428.
[20] P.S. Swain, K. Stevenson, A. Leary, L.F. Montano-Gutierrez, I.B.N. Clark, J. Vogel, and T. Pilizota. Inferring time derivatives including growth rates using Gaussian processes. Nat Commun 7 (2016) 13766.