簡易檢索 / 詳目顯示

研究生: 林鼎舜
Lin, Ding-Shun
論文名稱: 應用於厭氧環境下細菌培養之無線傳輸型生物反應器
Wireless bioreactor for anaerobic cultivation of bacteria
指導教授: 楊雅棠
Yang, Ya-Tang
口試委員: 黃介辰
Huang, Chieh-Chen
張晃猷
Chang, Hwan-you
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 70
中文關鍵詞: 厭氧型細菌生物反應器資料無線傳輸大腸桿菌氫氣
外文關鍵詞: anaerobic bacteria, bioreactor, data transmission, Escherichia coli, hydrogen
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 厭氧型細菌在微生物學裡是一門擁有廣泛興趣的研究,然而其無氧培養技術仍然十分地不便利。此論文裡我們呈現了一項技術可以進行厭氧培養的生物反應器,濁度測量、流體攪拌、氣體傳送以及資料無線傳輸等功能均在封閉的厭氧環境完成。其無氧環境是藉由氣體產氣包而非常見生物實驗室裡的厭氧操作台來達成。此研究以大腸桿菌進行培養並藉由不同碳源和氫氣當作能量來源來呈現。


    Anaerobic bacteria are of great interests in wide range of microbiology and yet anaerobic cultivation technique remains cumbersome. Here we report an alternative cultivation strategy based on a bioreactor with the entire operation including turbidity measurement, fluid mixing, gas delivery and data transmission in a gas tight anaerobic enclosure. The anaerobic condition is achieved with gas pack with no need of anaerobic cabinet. Such a cultivation strategy is demonstrated with Escherichia coli with different carbon sources and hydrogen as energy source.

    誌謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 IX 一、緒論 1 1-1研究動機 1 1-2文獻回顧 3 1-2-1生物反應器的建構 3 1-2-2在不同培養基下的細菌生長 4 二、材料及方法 6 2-1製作厭氧多碳源大腸桿菌樣本 6 2-2藥品配製 7 2-3厭氧環境設計機制 9 2-3-1產氫氣機制 9 2-3-2氧氣排除設計 11 2-4系統設置 11 2-4-1 硬體架設 11 2-4-2光感測生物反應器製作 15 2-4-3自製攪拌系統 17 2-4-4無線傳輸系統 18 2-4-5 泵浦打氣系統 20 2-4-6 Arduino程式編譯 21 2-4校正系統電壓 22 2-5光學量測方法 24 三、實驗結果 25 3-1實驗前準備步驟 25 3-2實驗步驟 26 3-2-1 大腸桿菌在不同碳來源培養基下的厭氧生長 26 3-2-3大腸桿菌在厭氧環境含氫氣環境下的生長 26 3-3培養結果 27 3-3-1 大腸桿菌在不同碳來源培養基下的厭氧生長 27 3-3-2大腸桿菌在厭氧環境含氫氣環境下的生長 29 3-3-3匹配生物反應器實驗 30 四、結論及討論 32 附錄 33 A-1 Arduino 程式碼 33 A-2 生物反應器與壓克架設計圖 42 A-3 大腸桿菌生長速率計算軟體 45 A-4 氫氣與氧氣氣壓測量設置與程式碼 47 A-5 電晶體ST-2L2B 挑選與比較 56 A-6 大腸桿菌厭氧演化實驗 57 參考文獻 58

    [1] A. C. Sonnenwirth, Evolution of anaerobic methodology. Am. J. Clin. Nutr. 25, (1972) 1295-1298.
    [2] K. L. Anderson and D.Y.C. Fung. Anaerobic methods, techniques and principles for food bacteriology: a review. J. Food Protection 46, (1983) 811-822.
    [3] P. A. Leach, J. J. Bullen, and I. D. Grant. Anaerobic CO2 cabinet for the cultivation of strict anaerobes. Appl. Microbiol. 22, (1971), 824-827.
    [4] J. H. Brewer. A new petri dish cover and technique for use in the cultivation of anaerobes and microaerophiles. Science 95, (1942), 987.
    [5] J. H. Brewer and J. H. Brown. A method for utilizing illuminating gas in the Brown, Fildes and McIntosh or other anaerobic jars of the Laidlaw principle. J. Lab. Clin. Med. 23, (1938) , 870-874.
    [6] J. Betts and F. Baganz. Miniature bioreactors: current practices and future opportunities. Micro Cell Fact. 5, (2006) 21 doi:10.1186/1475-2859-5-21
    [7] C. N. Takahashi, A. W. Miller, F. Ekness, M. J. Dunham and E. Klavins. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol. 4, (2014) 32.
    [8] E. Toprak, A. Veres, J. B. Michel, R. Chait, D. L. Hartl, R. Kishony . Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nature Genetics. 44, (2012) 101-106.
    [9] E. Toprak, A. Veres, S. Yildiz, J. M. Pedraza, R. Chait, J. Paulsson, and R. Kishony. Building a morbidostat: an automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8, (2013) 555−567.
    [10] P. C. Liu, Y. T. Lee, C. Y Wang, and Y. T. Yang. Design and use of a low cost, automated morbidostat for adaptive evolution of bacteria under antibiotic drug selection. J. Vis. Exp. 1154, (2016) e54426.
    [11] H.K.Wang and Y.T.Yang. Mini photobioreactors for in vivo real-time characterization and evolutionary tuning of bacterial optogenetic circuit. ACS Synth. Biol. (2017) DOI: 10.1021/acssynbio.7b0009.
    [12] T. Pilizota and Y.T.Yang. Do it Yourself microbial cultivation techniques for synthetic and systems biology: cheap, fun and flexible. Front. Microbiol. 9, (2018), 1666
    [13] C. N. Takahashi, A. W. Miller,Ekness, F., Dunham, M. J., and Klavins, E. A low cost, customizable turbidostat for use in synthetic circuit characterization. ACS Synth. Biol. (2014), DOI: 10.1021/ sb500165g.
    [14] O. Paliy , T.S. Gunasekera. Growth of E. coli BL21 in minimal media with different gluconeogenic carbon sources and salt contents. Appl. Microbiol. Biotechnol. (2007) 73, 1169-1172.
    [15] Thomas E. Crozier, Sachio Yamamoto. Solubility of hydrogen in water, sea water, and sodium chloride solutions. Journal of Chemical & Engineering Data (1974) 19, 3, 242-244
    [16] F. C. Neidhart, J.L.M. Ingraham,Schaechter. Physiology of the bacterial cell: a molecular approach. (1990) Cary:Sinauer Associates.
    [17] J. D. Orth, I. Thiele, and B. Ø. Palsson. What is flux balance analysis. Nat. Biotechnol. 28, (2010) 245−248.
    [18] J. E. Gonzalez, C. P. Long, and M. R. Antoniewicz Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis, Metabolic Engineering 39 (2017) 9–18.
    [19] J. Macy, H. Kulla, and G. Gottshohalk, H2 dependent anaerobic growth of Escherichia coli on L-Malate : succinate formation, J. Bacteriology, (1976) 423-428.
    [20] P.S. Swain, K. Stevenson, A. Leary, L.F. Montano-Gutierrez, I.B.N. Clark, J. Vogel, and T. Pilizota. Inferring time derivatives including growth rates using Gaussian processes. Nat Commun 7 (2016) 13766.

    QR CODE