研究生: |
簡浩恆 Chien, Hao-Heng |
---|---|
論文名稱: |
透過一致矩陣分解跨富含內容之社群網路進行目標使用者預測 Target Node Prediction across Content-Rich Social Networks via Consistent Incidence Co-Factorization |
指導教授: |
吳尚鴻
Wu, Shan-Hung |
口試委員: |
陳良弼
李素瑛 林智仁 陳銘憲 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 30 |
中文關鍵詞: | 使用者預測 、社群網路 |
外文關鍵詞: | node prediction, social network |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著社群服務的成長,愈來愈多公司擁有多個社群網路,其中有一個重要的問題為「目標使用者預測」,目標是找到現有網路中最有可能加入另一個網路的使用者,如此廣告預算能夠更精確的置於這些使用者上面。
雖然這個問題能用跨領域學習來解,但在現實的情況中卻會因為下列原因導致效果並不好,首先是邊上的內容很常見且包含很有價值的資訊,但現有的作法並沒有將其納入考量,第二點是兩個社群網路可能基於不同原因形成而且各自發展,因此造成彼此之間的異質,導致現有的跨領域學習演算法不能成功傳遞資訊。
在論文中,我們提出「一致矩陣分解」來做到資訊的傳遞,「一致矩陣分解」考量了邊上的資訊來找到較有意義的隱藏因素,且利用找到行為一致的使用者處理異質性的問題,在實驗部分,我們同時展示「一致矩陣分解」在直接進行預測以及配合已存在的分類器時,都能很好的解決目標使用者預測的問題。
With the growth of social services, more and more social networks are owned by the same company. An important problem, called the target node prediction problem, to the owner of multiple social networks is to identify those users from one network (called the source network) who are likely to join another (called the target network) to become the target users, so that the advertisements can be placed more precisely and economically.
Although this problem can be solved using existing techniques in the field of cross domain learning, we observe that in many real-world situations the cross-domain classifiers perform sub-optimally due to the following reasons. First, most of the existing works do not take into account the contents of edges, which are common in practice and encode valuable information. Second, since the target and source networks may be formed by different reasons and evolve distinctively, they may be heterogeneous, preventing the existing cross domain classifiers from transferring the knowledge from the target network to source network.
In this paper, we propose the Consistent Incidence Co-Factorization (CICF) that helps the knowledge transfer between social networks. The CICF uses the edge-specific information to find better latent factors, and copes with the heterogeneity by transferring knowledge only through those common users that behave consistently in the two networks. Extensive simulations are conducted and the results demonstrate the effectiveness of CICF, either when it is used directly to predict the target users or indirectly as a preprocessing tool for existing classifiers.
[1] M. Belkin and P. Niyogi. Using manifold structure for partially labeled classification. Advances in Neural Information
Processing Systems, 15:929–936, 2002.
[2] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regularization: A geometric framework for learning from labeled and
unlabeled examples. The Journal of Machine Learning Research, 7:2399–2434, 2006.
[3] A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. In Proc. of ICML, 2001.
[4] Andrzej Cichocki and Anh-Huy Phan. Fast local algorithms for large scale nonnegative matrix and tensor factorizations. IEICE
Trans on Fundamentals of Electronics, Communications and Computer Science, 92(3):708–721, 2009.
[5] W. Dai, G.R. Xue, Q. Yang, and Y. Yu. Co-clustering based classification for out-of-domain documents. In Proc. of KDD,
volume 12, pages 210–219, 2007.
[6] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.
[7] Jingrui He, Yan Liu, and Richard Lawrence. Graph-based transfer learning. In Proc. of CIKM, pages 937–946, 2009.
[8] Cho-Jui Hsieh and Inderjit S. Dhillon. Fast coordinate descent methods with variable selection for non-negative matrix
factorization. In Proc. of KDD, pages 1064–1072, 2011.
[9] M.S.T. Jaakkola. Partially labeled classification with markov random walks. Advances in Neural Information Processing
Systems, 2:945, 2002.
[10] Meng Jiang, Peng Cui, Fei Wang, Qiang Yang, Wenwu Zhu, and Shiqiang Yang. Social recommendation across multiple
relational domains. In Proc. of CIKM, 2012.
[11] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature,
401(6755):788–791, 1999.
[12] Hyekyoung Lee, Jiho Yoo, and Seungjin Choi. Semi-supervised nonnegative matrix factorization. Signal Processing Letters,
17(1):4–7, 2010.
[13] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral marketing. ACM Trans. on the Web,
1(1):5, 2007.
[14] X. Ling, W. Dai, G.R. Xue, Q. Yang, and Y. Yu. Spectral domain-transfer learning. In Proc. of KDD, pages 488–496, 2008.
[15] B. Liu. Web data mining: exploring hyperlinks, contents, and usage data. Springer Verlag, 2007.
[16] M. Long, J. Wang, G. Ding, W. Cheng, X. Zhang, and W. Wang. Dual transfer learning. In Proc. of SIAM, 2012.
[17] M. Long, J. Wang, G. Ding, D. Shen, and Q. Yang. Transfer learning with graph co-regularization. In Proc. of AAAI, 2012.
[18] Zhengdong Lu, Berkant Savas, Wei Tang, and Inderjit S. Dhillon. Supervised link prediction using multiple sources. In Proc.
of ICDM, pages 923–928, 2010.
[19] M.E.J. Newman. Modularity and community structure in networks. Proc. of the National Academy of Sciences,
103(23):8577–8582, 2006.
[20] S.J. Pan, I.W. Tsang, J.T. Kwok, and Q. Yang. Domain adaptation via transfer component analysis. IEEE Trans. on Neural
Networks, 22(2):199–210, 2011.
[21] G.J. Qi, C.C. Aggarwal, and T. Huang. Community detection with edge content in social media networks. In Proc. of ICDE,
pages 534–545, 2012.
[22] Ben Recht, Christopher Re, Joel Tropp, and Victor Bittorf. Factoring nonnegative matrices with linear programs. In Advances
in Neural Information Processing Systems, pages 1223–1231, 2012.
[23] M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P. Smyth. The author-topic model for authors and documents. In Proc. of UAI,
pages 487–494, 2004.
[24] D. Seung and L. Lee. Algorithms for non-negative matrix factorization. Advances in Neural Information Processing Systems,
13:556–562, 2001.
[25] J. Tang, S. Wu, J. Sun, and H. Su. Cross-domain collaboration recommendation. In Proc. of KDD, pages 1285–1293, 2012.
[26] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer: Extraction and mining of academic social
networks. In Proc. of KDD, pages 990–998, 2008.
[27] Wei Tang, Zhengdong Lu, and Inderjit S. Dhillon. Clustering with multiple graphs. In Proc. of ICDM, pages 1016–1021,
2009.
[28] C. Wang and S. Mahadevan. Manifold alignment without correspondence. In Proc. of IJCAI, 2009.
[29] C. Wang and S. Mahadevan. Heterogeneous domain adaptation using manifold alignment. In Proc. of IJCAI, pages 1541–1546,
2011.
[30] T. Yang, R. Jin, Y. Chi, and S. Zhu. Combining link and content for community detection: a discriminative approach. In Proc.
of KDD, pages 927–936, 2009.
[31] Z. Yang and E. Oja. Unified development of multiplicative algorithms for linear and quadratic nonnegative matrix factorization.
IEEE Trans. on Neural Networks, 22(12):1878–1891, 2011.
[32] Zhirong Yang, Tele Hao, Onur Dikmen, Xi Chen, and Erkki Oja. Clustering by nonnegative matrix factorization using graph
random walk. In Advances in Neural Information Processing Systems, pages 1088–1096, 2012.
[33] Zhirong Yang and Erkki Oja. Linear and nonlinear projective nonnegative matrix factorization. IEEE Trans. on Neural
Networks, 21(5):734–749, 2010.
[34] H. Zhang, Z. Yang, and E. Oja. Adaptive multiplicative updates for projective nonnegative matrix factorization. In Proc. of
the Neural Information Processing, pages 277–284, 2012.
[35] Y. Zhao, X. Kong, and P.S. Yu. Positive and unlabeled learning for graph classification. In Proc. of ICDM, pages 962–971,
2011.
[36] E. Zhong, W. Fan, J. Wang, L. Xiao, and Y. Li. Comsoc: adaptive transfer of user behaviors over composite social network.
In Proc. of KDD, pages 696–704, 2012.
[37] Y. Zhou, H. Cheng, and J.X. Yu. Graph clustering based on structural/attribute similarities. Proc. of VLDB, 2(1):718–729,
2009.
[38] X. Zhu, Z. Ghahramani, J. Lafferty, et al. Semi-supervised learning using gaussian fields and harmonic functions. In Proc. of
ICML, 2003.
[39] X. Zhu and A.B. Goldberg. Introduction to semi-supervised learning. Synthesis lectures on artificial intelligence and machine
learning, 3(1):1–130, 2009.
[40] F. Zhuang, P. Luo, H. Xiong, Q. He, Y. Xiong, and Z. Shi. Exploiting associations between word clusters and document
classes for cross-domain text categorization. Statistical Analysis and Data Mining, 4(1):100–114, 2011.