研究生: |
蕭仲鈞 Hsiao, Chung Chun |
---|---|
論文名稱: |
角動量守恆球型機器人之機電整合與控制 Control and Mechatronics of Spherical Robot via Conservation of Angular Momentum |
指導教授: |
杜佳穎
Tu, Jia Ying |
口試委員: |
楊智媖
林顯易 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 三層球型機器人 、單層球型機器人 、拉格朗日方程式 、角動量守恆原理 |
外文關鍵詞: | Three Layer Spherical Robot, One Layer Spherical Robot, Lagrange Equation, Conservation of Angular Momentum |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文參考比較各類型機器人,近年來類似獨輪車的單輪機器人系統陸續提出,球型機器人因為具備以下優點而廣泛受到重視:全方位角度偵測與運動、球型幾何對稱構造使機器人能自衝撞或不穩定中快速回復平衡姿態、整個球殼皆可與地面接觸運動而不需額外連接機構並增加運動平順度,目前文獻中有多種平衡與驅動機構提出。
在近五、六年來萬向環型架與陀螺儀效應元素不斷加入球型機器人開發,其基於三維球型結構而開發之機械系統具備下列優勢:球殼與萬向環型架可以保護所有動力元件因此可以避免環境干擾並增加操作強健性;外部衝擊力可均勻分散全球殼以避免局部重創;加入陀螺儀效應與萬向環型架裝置更可提升操作靈敏度。因此,本論文構想開發一較新的三層球型機器人機構,能量損耗將低於傳統的多輪機器人系統,球型的設計可提高穩定度、提升操控靈活度,其外觀架構由外球殼、中球殼及內球殼三個可三維轉動的飛球所組成。
本論文將實踐單層球型機器人之機構設計、運動方程式推導以及模擬、馬達控制的實驗結果。在機構設計中會介紹單層球型機器人各個元件的配置、用途以及轉盤轉彎角度控制系統的研發,並與三層球型機器人機構元件進行比較。接著利用牛頓法中剛體運動學定理以及拉格朗日方程式(Lagrange equation)進行球型機器人運動方程式推導。在模擬的部分,使用MATLAB/Simulink驗證動態系統推導的合理性,觀察在不同的馬達轉速下,球體運行的軌跡。最後經過軟硬體間訊號處理後,進行馬達位置及角度控制實驗。此篇論文完整地整合球型機器人的機構設計、運動方程式推導、運動方程式模擬以及最後實際的馬達位置及角度控制,將有助於未來實現三維球型機器人。
In recent year, the single wheel robot systems which are similar to wheelbarrow are proposed. This study compares various types of robots, and the spherical robots receive many concerns because of following advantages: They can move and do omnidirectional reconnaissance; the symmetrical structure enables the spherical robots to restore balance as suffering impact; simplifies steering and power mechanisms.
The development of spherical robots applies gimbal structure and gyroscope effect recently. The mechanical systems based on three dimensional spherical structures provide following advantages: The outer shell and gimbal can protect all power components from environmental interference; external impact force can be uniformly dispersed in order to avoid damage. Therefore, This study will develop a new Three Layer Spherical Robot whose energy consumption will be lower than the traditional multi-robot system.
This study will practice the mechanism design, equations of motion, simulation and motor control of the One Layer Spherical Robot. The planar rigid body kinematics and the Lagrange method are used to solve the equations of motion. The commercial software MATLAB/Simulink simulate the design and motion of the spherical robotic system. This study integrates the mechanical design, equation of motion, dynamic simulation, and finally, the actual motor control. In the future, the Three Layer Spherical Robotic system will be realized.
1.Cazzolato, B., J. Harvey, C. Dyer, K. Fulton, E. Schumann, T. Zhu, Z. Prime, B. Davis, S. Hart, E. Pearce, and J. Atterton. Modeling, simulation and control of an electric diwheel. in Australasian Conference on Robotics and Automation. 2011. Melbourne, VIC, Australia: Australian Robotics and Automation Association Inc.
2.Brown, H.B., Jr. and X. Yangsheng. A single-wheel, gyroscopically stabilized robot. 1996. New York, NY, USA: IEEE.
3.Nandy, G.C. and X. Yangsheng. Dynamic model of a gyroscopic wheel. 1998. New York, NY, USA: IEEE.
4.Yangsheng, X., H.B. Brown, Jr., and A. Kwok Wai, Dynamic mobility with single-wheel configuration. 1999. 18(7): p. 728-38.
5.Zhu, Z., M.P. Naing, and A. Al-Mamun. Integrated ADAMS+MATLAB environment for design of an autonomous single wheel robot. in 35th Annual Conference of the IEEE Industrial Electronics Society, IECON 2009. Porto, Portugal: IEEE Computer Society.
6.Halme, A., T. Schonberg, and W. Yan. Motion control of a spherical mobile robot. in Proceedings of 4th IEEE International Workshop on Advanced Motion Control 1996. New York, NY, USA: IEEE.
7.Bhattacharya, S. and S.K. Agrawal. Design, experiments and motion planning of a spherical rolling robot. in Proceedings ICRA. IEEE International Conference on Robotics and Automation. 2000. Piscataway, NJ, USA: IEEE.
8.Otani, T., T. Urakubo, S. Maekawa, H. Tamaki, and Y. Tada. Position and attitude control of a spherical rolling robot equipped with a gyro. in 9th IEEE International Workshop on Advanced Motion Control. 2006. Istanbul, Turkey: Institute of Electrical and Electronics Engineers Inc.
9.Yue, M. and Z. Deng, Stabilized platform control in the spherical robot based on coordinate transformation. Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2009. 45(5): p. 271-275+280.
10.Urakubo, T., M. Osawa, H. Tamaki, Y. Tada, and S. Maekawa. Development of a spherical rolling robot equipped with a gyro. 2012. Piscataway, NJ, USA: IEEE.
11.Wei-Hsi, C., C. Ching-Pei, Y. Wei-Shun, L. Chang-Hao, and L. Pei-Chun. Design and implementation of an omnidirectional spherical robot Omnicron. in IEEE/ASME International Conference on Advanced Intelligent Mechatronics. 2012. Piscataway, NJ, USA: IEEE.
12.Mahboubi, S., M.M. Seyyed Fakhrabadi, and A. Ghanbari, Design and implementation of a novel spherical mobile robot. Journal of Intelligent and Robotic Systems: Theory and Applications, 2013. 71(1): p. 43-64.
13.Chase, R. and A. Pandya, A Review of Active Mechanical Driving Principles of Spherical Robots. 2012. 1(1): p. 3-23.
14.Qingxuan, J., C. Xiaowei, S. Hanxu, and S. Jingzhou. A novel design of a two-wheeled robot. in Second IEEE Conference on Industrial Electronics and Applications. 2007. Piscataway, NJ, USA: IEEE.
15.Jayoung, K., H. Kwon, and L. Jihong. A rolling robot: design and implementation. in 7th Asian Control Conference. 2009. Piscataway, NJ, USA: IEEE.
16.Shu, G., Q. Zhan, and Y. Cai. Motion control of spherical robot based on conservation of angular momentum. in IEEE International Conference on Mechatronics and Automation, ICMA 2009. Changchun, China: IEEE Computer Society.
17.Briod, A., P. Kornatowski, J.-C. Zufferey, and D. Floreano, A collision-resilient flying Robot. Journal of Field Robotics, 2014. 31(4): p. 496-509.
18.Thorne, C.E. and M. Yim. Towards the Development of Gyroscopically Controlled Micro Air Vehicles. in IEEE International Conference on Robotics and Automation, 9-13 May 2011. 2011. Piscataway, NJ, USA: IEEE.
19.Thorne, C.E., Design and analysis of a gyroscopically controlled micro air vehicle. 3498010, University of Pennsylvania, Ann Arbor, 2011.
20.Hibbeler, R.C., ENGINEERING MECHANICS DYNAMICS. Twelfth ed. 2010: Pearson Prentice Hall.
21.Udwadia, F.E. and A.D. Schutte, Equations of motion for general constrained systems in Lagrangian mechanics. Acta Mechanica, 2010. 213(1-2): p. 111-29.