簡易檢索 / 詳目顯示

研究生: 范添然
Fan, Tien-Jan
論文名稱: 聚對苯二甲醯癸二胺與其共聚物之結晶行為與形態學研究
Crystallization Behavior and Morphology of Poly(decamethylene terephthalamide) and Its Copolymers
指導教授: 陳信龍
Chen, Hsin-Lung
口試委員: 林裕軒
Lin, Yu-Hsuan
陳孟歆
Chen, Meng-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 65
中文關鍵詞: 尼龍聚醯胺共聚物
外文關鍵詞: Nylon, Polyamide, Random copolymer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於半芳香型聚醯胺顯著的機械性質、熱性質以及良好的尺寸穩定性,其已成為芳香型聚醯胺以及脂肪型聚醯胺的替代方案。值得注意的是,在合成聚對苯二甲醯癸二胺(PA10T)中使用的癸二胺,其來源於蓖麻油,為一種生質材料,有利於發展綠色化學以及永續發展。然而PA10T的熔點接近其裂解溫度,從而限制其加工性。利用PA10與4-Aminomethylbenzoic acid (4-AmBA)共同聚合可以解決這項缺點。在這項研究中,我們系統性的研究了PA10T與其共聚物的結晶行為以及形態學,透過操控共單體的比例以及結晶條件,研究不同條件下PA10T的結晶行為,包括結晶動力學、晶體厚度的減少、球晶的破壞、高分子的鏈堆積以及Brill transition。共單體對於PA10T結晶的影響導致PA10T的熔點降低,使加工溫度範圍變大,也讓PA10T在工業上有更高的實用性。


    Semi-aromatic polyamide has emerged as a promising alternative to both aliphatic and aromatic polyamides due to its remarkable mechanical, thermal properties, along with excellent dimensional stability. Notably, the monomer 1,10-diaminodecane used in the synthesis of a semi-aromatic polyamide, poly(decamethylene terephthalamide) (PA10T), is derived from cast oil—a biobased raw material aligning with the green chemistry for sustainable development. Nevertheless, the melting point of PA10T is still near its degradation temperature, thereby limiting its processing condition and applicability. Copolymerization of PA10T with 4-Aminomethylbenzoic acid (4-AmBA) has been exploited as an approach to circumvent this potential drawback. In this study, we systematically investigate the crystallization behavior and crystalline morphology of PA10T and its copolymers with 4-AmBA, aiming to lay the groundwork for controlling the structure by manipulating comonomer composition and crystallization condition. The introduction of the comonomer into the PA10T backbone is found to impact the crystallization behavior of PA10T, including the reductions of crystallization kinetics and crystal thickness as well as the perturbations of the spherulite morphology, chain packing in the crystal lattice, and Brill transition. Notably, these perturbations resulted in a broadening of the melt processing window for PA10T. This widened processing window holds substantial practical implications, potentially expanding the applicability of PA10T in various industrial contexts.

    Abstract ii Table of Content iii Chapter 1. General Introduction and Literature Review 1 1.1 General Introduction of Polyamide 1 1.2 Crystallization Behavior of Polyamide 4 1.3 Crystallization of Random Copolymer 9 1.4 Research Motivation 14 Chapter 2. Experimental Section 16 2.1 Materials 16 2.2 Differential Scanning Calorimetry (DSC) 16 2.3 Small/Wide Angle X-ray Scattering (SAXS/WAXS) Experiment 17 2.4 Polarized Optical Microscope (POM) Observation 18 2.5 1-D Correlation Function Analysis of the SAXS Data 19 Chapter 3. Results and Discussion 21 3.1 Thermal Properties 21 3.2 Crystalline Morphology 29 3.2.1 Spherulite Morphology 29 3.2.2 Lamellar Crystal Morphology 31 3.3 Crystallographic structure and crystal-crystal transition 39 3.3.1 Temperature-dependent WAXS profiles of the non-isothermally crystallized Samples 39 3.3.2 Temperature-dependent WAXS profiles of isothermally crystallized samples 48 3.4 Segmental ordering in the melt-quenched samples 53 Chapter 4. Conclusions 58 References 61

    1. Lincoln, D.M., R.A. Vaia, and R. Krishnamoorti, Isothermal crystallization of nylon-6/montmorillonite nanocomposites. Macromolecules, 2004. 37(12): p. 4554-4561.
    2. Boukal, I., Effect of water on the mechanism of deformation of nylon 6. Journal of applied polymer science, 1967. 11(8): p. 1483-1494.
    3. Hinrichsen, G., The role of water in polyamides. Colloid and Polymer Science, 1978. 256: p. 9-14.
    4. Ishikawa, K., et al., Lattice deformation of nylon 6 crystal by water sorption. Sen'i Gakkaishi, 1969. 25(1): p. 11-15.
    5. Yang, H.H., Aromatic high-strength fibers. (No Title), 1989.
    6. Vollbracht, L., Aromatic polyamides. Pergamon Press plc, Comprehensive Polymer Science., 1989. 5: p. 375-386.
    7. García, J.M., et al., High-performance aromatic polyamides. Progress in polymer science, 2010. 35(5): p. 623-686.
    8. Reglero Ruiz, J.A., et al., Functional aromatic polyamides. Polymers, 2017. 9(9): p. 414.
    9. Zhang, G., et al., Semiaromatic polyamides containing ether and different numbers of methylene (2–10) units: synthesis and properties. Rsc Advances, 2014. 4(108): p. 63006-63015.
    10. Uchida, K., et al., Semi-aromatic polyamide resin. 2009, Google Patents.
    11. Lin, X.-B., et al., A hybrid flame retardant for semi-aromatic polyamide: Unique structure towards self-compatibilization and flame retardation. Chemical Engineering Journal, 2018. 334: p. 1046-1054.
    12. Ai, T., et al., High‐performances biobased semi‐aromatic polyamide 10T copolymerized with silicone monomers. Journal of Applied Polymer Science, 2021. 138(16): p. 50266.
    13. Gaymans, R., J. De Haan, and O. Van Nieuwenhuize, Copolymers of PBT and Nylon 4T. Journal of Polymer Science Part A: Polymer Chemistry, 1993. 31(2): p. 575-580.
    14. Wang, Z., et al., Improved strength and toughness of semi-aromatic polyamide 6T-co-6 (PA6T/6)/GO composites via in situ polymerization. Composites Science and Technology, 2019. 175: p. 6-17.
    15. Yamamoto, H., et al., Crystal structures and phase transition behavior of Poly (nonamethylene terephthalamide) and its model compounds. Polymer, 2017. 116: p. 378-394.
    16. Wang, W., et al., Environment‐friendly synthesis of long chain semiaromatic polyamides with high heat resistance. Journal of applied polymer science, 2009. 114(4): p. 2036-2042.
    17. Liu, H., et al., Isothermal and nonisothermal crystallization kinetics of a semicrystalline copolyterephthalamide based on poly (decamethylene terephthalamide). Journal of applied polymer science, 2004. 94(2): p. 819-826.
    18. Li, M., Study on melting and polymorphic behavior of poly (decamethylene terephthalamide). Journal of Polymer Science Part B: Polymer Physics, 2019. 57(8): p. 465-472.
    19. Zou, G., et al., Poly (decamethylene terephthalamide) copolymerized with long‐chain alkyl dodecanedioic acid: Toward bio‐based polymer and improved performances. Journal of Applied Polymer Science, 2018. 135(31): p. 46531.
    20. Rong, Z., et al. In Situ Preparation of Thermotropic Liquid Crystalline Polyester and Nylon 10T. in MATEC Web of Conferences. 2022. EDP Sciences.
    21. Feng, W., et al., Synthesis and characterization of semiaromatic copolyamide 10T/1014 with high performance and flexibility. Designed Monomers and Polymers, 2018. 21(1): p. 33-42.
    22. Feng, W., et al., Effect of aliphatic diacid chain length on properties of semiaromatic copolyamides based on PA10T and their theoretical study. Industrial & Engineering Chemistry Research, 2019. 58(17): p. 7217-7226.
    23. Wang, Y., et al., The brill transition in long-chain aliphatic polyamide 1012: the role of hydrogen-bonding organization. Macromolecules, 2021. 54(14): p. 6835-6844.
    24. Vinken, E., et al., Influence of hydrogen bonding on the conformational changes, the brill transition, and lamellae thickening in (co) polyamides. Macromolecules, 2006. 39(7): p. 2546-2552.
    25. Liu, X., et al., The origin of memory effects in the crystallization of polyamides: Role of hydrogen bonding. Polymer, 2020. 188: p. 122117.
    26. Bunn, C.W., E. Garner, and W.L. Bragg, The crystal structures of two polyamides (‘nylons’). Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 1947. 189(1016): p. 39-68.
    27. Holmes, D., C. Bunn, and D. Smith, The crystal structure of polycaproamide: Nylon 6. Journal of Polymer Science, 1955. 17(84): p. 159-177.
    28. Li, Y. and W.A. Goddard, Nylon 6 crystal structures, folds, and lamellae from theory. Macromolecules, 2002. 35(22): p. 8440-8455.
    29. Parker, J.P. and P.H. Lindenmeyer, On the crystal structure of Nylon 6. Journal of Applied Polymer Science, 1977. 21(3): p. 821-837.
    30. Brill, R., über das Verhalten von Polyamiden beim Erhitzen. Journal für praktische Chemie, 1942. 161(1‐3): p. 49-64.
    31. Pepin, J., V. Miri, and J.-M. Lefebvre, New insights into the Brill transition in polyamide 11 and polyamide 6. Macromolecules, 2016. 49(2): p. 564-573.
    32. Yoshioka, Y. and K. Tashiro, Structural change in the Brill transition of Nylon m/n (1) Nylon 10/10 and its model compounds. Polymer, 2003. 44(22): p. 7007-7019.
    33. Yoshioka, Y., K. Tashiro, and C. Ramesh, Structural change in the Brill transition of Nylon m/n (2) conformational disordering as viewed from the temperature-dependent infrared spectral measurements. Polymer, 2003. 44(20): p. 6407-6417.
    34. Lotz, B., Brill transition in nylons: the structural scenario. Macromolecules, 2021. 54(2): p. 565-583.
    35. Lotz, B., Original crystal structures of even–even polyamides made of pleated and rippled sheets. Macromolecules, 2021. 54(2): p. 551-564.
    36. Dasgupta, S., W.B. Hammond, and W.A. Goddard, Crystal structures and properties of nylon polymers from theory. Journal of the American Chemical Society, 1996. 118(49): p. 12291-12301.
    37. Ramesh, C., A. Keller, and S. Eltink, Studies on the crystallization and melting of nylon-6, 6: 1. The dependence of the Brill transition on the crystallization temperature. Polymer, 1994. 35(12): p. 2483-2487.
    38. Sanchez, I. and R. Eby, Thermodynamics and crystallization of random copolymers. Macromolecules, 1975. 8(5): p. 638-641.
    39. Sanchez, I.C. and R. Eby, Crystallization of random copolymers. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry, 1973. 77(3): p. 353.
    40. Zheng, Y., et al., Temperature-dependent crystal structure and structural evolution of poly (glycolide-co-lactide) induced by comonomeric defect inclusion/exclusion. Polymer, 2021. 227: p. 123867.
    41. Flory, P.J., Theory of crystallization in copolymers. Transactions of the Faraday Society, 1955. 51: p. 848-857.
    42. Vanhaecht, B., et al., A WAXD and solid-state NMR study on cocrystallization in partially cycloaliphatic polyamide 12.6-based copolymers. Macromolecules, 2004. 37(2): p. 421-428.
    43. Vanhaecht, B., et al., Stereochemistry driven distribution of 1, 4-diaminocyclohexane residues over the crystalline and amorphous phase in copolyamides 4.14/1, 4-DACH. 14. A solid-state NMR and temperature-dependent WAXD study. Macromolecules, 2005. 38(14): p. 6048-6055.
    44. Hoffmann, S., et al., Cocrystallization in piperazine-based polyamide copolymers: Small-and wide-angle X-ray diffraction studies at 30 C. Macromolecules, 2005. 38(5): p. 1797-1803.
    45. Jasinska-Walc, L., et al., Structure and molecular dynamics in renewable polyamides from dideoxy–diamino isohexide. Macromolecules, 2012. 45(14): p. 5653-5666.
    46. Jasinska-Walc, L., et al., Local conformation and cocrystallization phenomena in renewable diaminoisoidide-based polyamides studied by FT-IR, solid state NMR, and WAXD. Macromolecules, 2012. 45(6): p. 2796-2808.
    47. Wu, J., et al., An investigation of polyamides based on isoidide-2, 5-dimethyleneamine as a green rigid building block with enhanced reactivity. Macromolecules, 2012. 45(23): p. 9333-9346.
    48. Xia, J., et al., Isodimorphic crystallization and tunable γ–α phase transition in aliphatic copolyamides: critical roles of comonomer defects and conformational evolution. Macromolecules, 2022. 55(14): p. 6090-6101.
    49. Bovey, F.A. and P.A. Mirau, NMR of Polymers. 1996: Academic Press.
    50. Nye., SAXS Correlation Function Analysis: Notes on the Software at Daresbury. 1994.
    51. Zhang, G., et al., Phase transition behavior of nylon-66, nylon-48, and blends. Polymer journal, 2003. 35(2): p. 173-177.
    52. Li, Y., et al., Multiple melting endotherms in melt‐crystallized nylon 10, 12. Polymer international, 2001. 50(6): p. 677-682.
    53. Woo, E.M., et al., Thermal Behavior of Ring‐Band versus Maltese‐Cross Spherulites: Case of Monomorphic Poly (ethylene adipate). Macromolecular Chemistry and Physics, 2006. 207(23): p. 2232-2243.
    54. Qiu, Z., et al., New insights into contribution of aromatic ring versus aliphatic ring to thermal transition temperatures of heat resistant polyamides: A comparison study of PA 10T and t-PA 10C. Polymer, 2023: p. 125701.
    55. Vasanthan, N., N.S. Murthy, and R.G. Bray, Investigation of Brill transition in nylon 6 and nylon 6, 6 by infrared spectroscopy. Macromolecules, 1998. 31(23): p. 8433-8435.

    QR CODE