簡易檢索 / 詳目顯示

研究生: 賴威翰
LAI, Wei-Han
論文名稱: 建立液動式微型化灌流式細胞培養平台以應用於高通量藥物檢測
Development of Hydraulically-Driven Microperfusion Cell Culture Platform for High Throughput Drug Screening
指導教授: 黃振煌
Huang, Jen-Huang
口試委員: 胡尚秀
Hu, Shang-Hsiu
蕭自宏
Hsiao, Tzu-Hung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 62
中文關鍵詞: 體外培養模型藥物篩檢高通量微加工技術灌流系統液體驅動式微型化灌流式細胞培養系統
外文關鍵詞: in-vitro models, drug screening, high throughput, micro-fabrication technique, perfusion system, hydraulically-driven micro-perfusion cell culture system
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前於癌症研究以及其藥物之開發上,體外的培養模型儼然已成為重要且標準的工具,例如:於Transwell ®細胞培養皿上進行培養以及三維的細胞球體培養。然而,這些體外培養模型於模擬體內微生理環境時受到了不少的限制,例如:PH值、氧氣濃度、養分供應以及代謝產物的排放等。而近年來,以微流體為基礎而建立的細胞培養平台廣泛地被應用於模擬腫瘤微環境,藉由其灌流系統來運送培養基或是其他生物因子並且精準的控制剪應力以及應變。然而每一個單位的細胞培養裝置都需要搭配著一套專屬的灌流系統以用來模擬微環境。因此,欲進行高通量的培養仍然是一大挑戰。
    因此於本研究中,我們透過了結合雷射加工以及逐層建構的微加工技術開發一套具有高通量特性的液體驅動式微型化灌流式細胞培養系統以用來長期培養癌症細胞並且加速癌症藥物的篩檢。每一個培養單元包含了三個主要的原件:細胞培養晶片、培養基儲存槽以及灌流系統。而各單元最終會整合成一平台的型式以便於用一組蠕動幫浦來控制多組灌流單元。藉此,我們可以同時製造出多組有著相同流動情況的脈動流以用來模擬相對應的生理環境。最終,我們要將此細胞培養平台用以更有效地開發癌症治療藥物以及毒性測試。


    In vitro culture models including Transwell ® and spheroid have become significant and standard tools for cancer research and drug screening. However, these models have shown the limitations to maintain the physiological levels of the environment, such as pH, oxygen, nutrient supply, and metabolite clearance. Microfluidic-based culture platform recently has been widely used to mimic the tumor microenvironment by precisely controlling the shear stress and mechanical strain, and delivering the reagents and other stimuli to cells when using a perfusion system. Nevertheless, each microfluidic cell culture device requires individual perfusion system to recapitulate the independent microenvironment. Therefore, it is still challenging to operate multiple devices at the same time, especially for high throughput applications.
    In this research, we presented a hydraulically-driven micro perfusion cell culture system, which is fabricated by a technique based on the combination of laser engraving manufacturing and additive lamination manufacturing, for long-term cancer cell culture with a high-throughput capability to facilitate the drug screening. Each culture unit mainly combined three parts: a cell culture device, a reservoir for medium storage, and a hydraulically-driven perfusion system. Every culture unit can be assembled into a single platform so that the perfusion systems were able to be controlled by using one single peristaltic pump to generate uniform flow distribution. With this platform, the multiple pulsatile flows can be generated to mimic the physiological relevant environment in each cell culture device. Finally, we aim to use this platform to perform a wide range of tests more effectively for drug development.

    Abstract i Contents iv List of illustrations vi List of tables x Chapter 1. Introduction and Literature Review 1 1-1 Background 1 1-2 Conventional assay models 2 1-2-1 In vivo models 3 1-2-2 In vitro models 4 1-3 Microfluidic-based culture 6 1-3-1 Microfluidic technology 6 1-3-2 Organ-on-a-chip 9 1-4 Previous study of perfusion-based platform 10 1-5 Purpose 12 Chapter 2. Materials and Methods 13 2-1 Materials 13 2-1-1 PET 13 2-1-2 PMMA 14 2-1-3 PDMS membrane 14 2-2 Platform design and fabrication 16 2-2-1 Drafting and fabrication 16 2-2-2 Setup of micro-perfusion-based cell culture platform 18 2-2-3 Peristaltic pump 20 2-2-4 Micro-pump 21 2-2-5 Micro-valve 23 2-2-6 Bioreactor 25 2-2-7 All-in-one micro-perfusion-based culture platform 27 2-3 Flow characterization 30 2-3-1 Flow rate of the peristaltic pump 30 2-3-2 Flow rate of the micro-perfusion system 31 2-3-3 Stability of the micro-perfusion system 32 2-3-4 Flow pattern of micro-perfusion system 32 2-4 Cell culture 33 2-4-1 Sterilization 33 2-4-2 Cell culture in the culture platform 34 2-5 Drug treatment and assays 36 2-5-1 Treatment on A549/GFP cell 36 2-5-2 Cell viability assay 38 Chapter 3. Current results 39 3.1 PDMS membrane fabrication and thickness selection 39 3.2 Flow characterization experiment 42 3-2-1 Flow rate test of peristaltic pump 42 3-2-2 Flow rate test of the micro-perfusion system 43 3-2-3 Flow stability test 45 3-2-4 Flow pattern of micro-perfusion system 47 3.3 Cell culture in the micro-perfusion-based platform 48 3-3-1 2D static culture in a bioreactor 48 3-3-2 2D dynamic culture in micro-perfusion-based platform 50 3.4 All-in-one micro-perfusion platform 51 3-4-1 Construction of all-in-one micro-perfusion platform 51 3-4-2 Flow rate of all-in-one micro-perfusion device 52 3-4-3 Dynamic cell culture with all-in-one micro-perfusion system 54 3-5 Drug treatment on A549/GFP cell 55 3-5-1 Result of treatment in 96-well plate 55 3-5-2 Dynamic treatment 56 Chapter.4 Conclusion and Future Work 58 4-1 Conclusions 58 4-2 Future Work 59 Chapter. 5 References 60

    1. What Is Cancer? 2015; Available from: https://www.cancer.gov/about-cancer/understanding/what-is-cancer.
    2. Cancer 2018; Available from: http://www.who.int/en/news-room/fact-sheets/detail/cancer.
    3. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018.
    4. Siddik, Z.H., Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene, 2003. 22(47): p. 7265-79.
    5. Florea, A.M. and D. Busselberg, Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel), 2011. 3(1): p. 1351-71.
    6. Aitken, M., et al., Global oncology trends 2018, innovation, expansion and disruption. IQVIA Institute for Human Data Science, 2018.
    7. Navale, A.M.J.I.J.o.P.S. and Research, Animal models of cancer: a review. 2013. 4(1): p. 19.
    8. Hatok, J., et al., In vitro assays for the evaluation of drug resistance in tumor cells. Clin Exp Med, 2009. 9(1): p. 1-7.
    9. Elliott, N.T. and F. Yuan, A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci, 2011. 100(1): p. 59-74.
    10. Dranoff, G., Experimental mouse tumour models: what can be learnt about human cancer immunology? Nat Rev Immunol, 2011. 12(1): p. 61-6.
    11. Meuwissen, R. and A. Berns, Mouse models for human lung cancer. Genes Dev, 2005. 19(6): p. 643-64.
    12. Cheluvappa, R., P. Scowen, and R. Eri, Ethics of animal research in human disease remediation, its institutional teaching; and alternatives to animal experimentation. Pharmacol Res Perspect, 2017. 5(4).
    13. Xu, F., et al., Microengineering methods for cell-based microarrays and high-throughput drug-screening applications. Biofabrication, 2011. 3(3): p. 034101.
    14. Cukierman, E., R. Pankov, and K.M.J.C.o.i.c.b. Yamada, Cell interactions with three-dimensional matrices. 2002. 14(5): p. 633-640.
    15. Kim, J.B., Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol, 2005. 15(5): p. 365-77.
    16. Larson, B.J.B.W.P., 3D Cell Culture: A Review of Current Techniques. 2015.
    17. Kim, J.B., et al., Three-dimensional in vitro tissue culture models of breast cancer—a review. 2004. 85(3): p. 281-291.
    18. Malinen, M.M., et al., Peptide nanofiber hydrogel induces formation of bile canaliculi structures in three-dimensional hepatic cell culture. Tissue Eng Part A, 2012. 18(23-24): p. 2418-25.
    19. Berdichevsky, F., et al., Branching morphogenesis of human mammary epithelial cells in collagen gels. 1994. 107(12): p. 3557-3568.
    20. Fridman, R., et al., Increased initiation and growth of tumor cell lines, cancer stem cells and biopsy material in mice using basement membrane matrix protein (Cultrex or Matrigel) co-injection. Nat Protoc, 2012. 7(6): p. 1138-44.
    21. van Midwoud, P.M., et al., Microfluidic biochip for the perifusion of precision-cut rat liver slices for metabolism and toxicology studies. Biotechnol Bioeng, 2010. 105(1): p. 184-94.
    22. Gravesen, P., et al., Microfluidics-a review. 1993. 3(4): p. 168.
    23. Amirouche, F., Y. Zhou, and T. Johnson, Current micropump technologies and their biomedical applications. Microsystem Technologies, 2009. 15(5): p. 647-666.
    24. Sackmann, E.K., A.L. Fulton, and D.J. Beebe, The present and future role of microfluidics in biomedical research. Nature, 2014. 507(7491): p. 181-9.
    25. Zhao, X.-M., Y. Xia, and G.M.J.J.o.M.C. Whitesides, Soft lithographic methods for nano-fabrication. 1997. 7(7): p. 1069-1074.
    26. Kim, P., et al., Soft lithography for microfluidics: a review. 2008.
    27. Whitesides, G.M., et al., Soft lithography in biology and biochemistry. 2001. 3(1): p. 335-373.
    28. Gates, B.D., et al., New approaches to nanofabrication: molding, printing, and other techniques. 2005. 105(4): p. 1171-1196.
    29. Klank, H., J.P. Kutter, and O. Geschke, CO(2)-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip, 2002. 2(4): p. 242-6.
    30. Snakenborg, D., H. Klank, and J.P. Kutter, Microstructure fabrication with a CO2 laser system. Journal of Micromechanics and Microengineering, 2004. 14(2): p. 182-189.
    31. Horn, D.I. UV-femtosecond laser ablation. 2018; Available from: https://www.mineralogie.uni-hannover.de/min_laserablation.html?&L=1.
    32. Bhatia, S.N. and D.E. Ingber, Microfluidic organs-on-chips. Nat Biotechnol, 2014. 32(8): p. 760-72.
    33. Huh, D., et al., Reconstituting organ-level lung functions on a chip. 2010. 328(5986): p. 1662-1668.
    34. Esch, E.W., A. Bahinski, and D. Huh, Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov, 2015. 14(4): p. 248-60.
    35. Laser, D.J. and J.G. Santiago, A review of micropumps. Journal of Micromechanics and Microengineering, 2004. 14(6): p. R35-R64.
    36. Wu, M.-H., et al., Development of perfusion-based micro 3-D cell culture platform and its application for high throughput drug testing. Sensors and Actuators B: Chemical, 2008. 129(1): p. 231-240.
    37. Halldorsson, S., et al., Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron, 2015. 63: p. 218-231.
    38. Huang, J.H., et al., Hollow fiber integrated microfluidic platforms for in vitro Co-culture of multiple cell types. Biomed Microdevices, 2016. 18(5): p. 88.
    39. Dewhirst, M.W., et al., Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. 1989. 17(1): p. 91-99.

    QR CODE